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We begin with one problem which was a stimulus for the develop-
ment of general optimal recovery problem. Assume that for a suffi-
ciently smooth function x(·) we know finite number of Fourier coef-
ficients which are given with some accuracy. How to reconstruct the
function x(·) or its derivative?

Suppose that

x(t) =
+∞∑

j=−∞
xje

ijt

and we know yj, |j| ≤ N , such that

‖xN − yN‖lN2
≤ δ,

where

xN = {xj}|j|≤N , yN = {yj}|j|≤N ,

and ‖ · ‖lN2
is the standard Euclidean norm in RN . The question is how

to recover the k-th derivative of x(·) (for example, x′(·)) knowing the
vector yN .

One of the simplest algorithm is the following

x′(t) ≈
∑

|j|≤N

ijyje
ijt.

But it is not good since for large j the error of the term ijyje
ijt becomes

large. In practice this phenomena is well known. Those who deal with
such problems simply cut the terms with high frequencies or smooth
them by some filter.

The problem which we would like to pose is: what is a best method
of recovery (or, in other words, what is a best filter)?

For this problem it is possible to obtain some algorithms using
Tikhonov regularization. However the estimates of such methods are
obtained for δ tends to 0. And we want to obtain a good algorithm for
a fixed δ. Moreover, we want to compare various methods and choose
the best one in some sense. The idea of searching the best algorithm
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is coming from A.N. Kolmogorov (it was appeared in his papers de-
voted to n-widths). In the simplest form this idea may be seen in the
problems connected with best quadrature formulae.

Now let as consider the precise statement of the problem. To avoid
technical details it is convenient to deal not with periodic functions
and their Fourier coefficients but with functions defined on R and their
Fourier transforms (nevertheless all considered results may be also for-
mulated for periodic case).

Assume that x(·) is sufficiently smooth function defined on R and
we know its Fourier transform Fx(·) on the interval ∆σ = (−σ, σ),
0 < σ ≤ ∞, with some accuracy. More precisely, we know a function
y(·) ∈ L2(∆σ) such that

‖Fx(·)− y(·)‖L2(∆σ) ≤ δ.

We want to recover x(k)(·) knowing y(·).
To make the statement of the problem correct we should know some

additional a priory information about function x(·). Usually this in-
formation is giving as a class of functions to which x(·) belongs. Thus
we assume that in this problem we deal only with functions from the
given class. We will consider Sobolev classes of functions.

Set

Wr
2(R) = { x(·) ∈ L2(R) : x(r−1) loc. abs. cont., x(r)(·) ∈ L2(R) },

where r is a natural number,

W r
2 (R) = { x(·) ∈ Wr

2(R) : ‖x(r)(·)‖L2(R) ≤ 1 }.
Let x(·) ∈ W r

2 (R) and we know a function y(·) such that

‖Fx(·)− y(·)‖L2(∆σ) ≤ δ.

Any mapping
m : L2(∆σ) → L2(R)

we consider as a method (or algorithm) of recovery of x(k)(·), 0 ≤ k ≤
r−1. Note that we do not require any additional properties of m (such
as linearity or continuality).

The error of the method m is defined as follows

eσ(Dk,W r
2 (R), δ,m) = sup

x(·)∈W r
2 (R), y(·)∈L2(∆σ)

‖Fx(·)−y(·)‖L2(∆σ)≤δ

‖x(k)(·)−m(y)(·)‖L2(R).

The error of optimal recovery is the following value

Eσ(Dk,W r
2 (R), δ) = inf

m : L2(∆σ)→L2(R)
eσ(Dk,W r

2 (R), δ,m).

We call m̂ an optimal method of recovery if

(1) eσ(Dk,W r
2 (R), δ, m̂) = Eσ(Dk,W r

2 (R), δ).

The solution of the considered problem is given in the following the-
orem obtained in [1]
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Theorem 1. Let k, r ∈ N, k ≤ r − 1, 0 < σ ≤ ∞, δ > 0, and

σ̂ =
( r

k

) 1
2(r−k)

(
2π

δ2

) 1
2r

.

Then

Eσ(Dk,W r
2 (R), δ) =





σk

√
r − k

2πr

(
k

r

) k
r−k

δ2 +
1

σ2r
, σ < σ̂,

(
δ2

2π

) r−k
2r

, σ ≥ σ̂,

and the method
(2)

m̂(y)(t) =
1

2π

∫

|τ |≤σ0

(iτ)k

(
1 +

r

r − k

( r

k

) k
r−k

(
τ

σ0

)2r
)−1

y(τ)eiτt dτ,

where σ0 = min(σ, σ̂), is optimal.
If k = 0 and 0 < σ < ∞, then

Eσ(Dk,W r
2 (R), δ) =

√
δ2

2π
+

1

σ2r

and the method

m̂(y)(t) =
1

2π

∫

|τ |≤σ

(
1 +

(τ

σ

)2r
)−1

y(τ)eiτt dτ

is optmal.

For a fixed error of input data consider the error of optimal recovery
Eσ as a function of σ. The larger interval (−σ, σ) we take the less
error we have. But beginning with σ̂ the error Eσ does not change (see
Fig. 1).

Consequently, for σ > σ̂ the observed information becomes partially
redundant. To avoid this case the following condition

δ2σ2r ≤ 2π
( r

k

) r
r−k

should hold. This inequality may be considered as some “uncertain
principle”.

There is another information characteristic besides σ̂. Further we
will discuss it.

Usually numerical algorithms (for instance, interpolation or quadra-
ture formulae) considered as good ones if they are exact for subspaces
of algebraic or trigonometric polynomials. In this connection one tries
to make the dimension of such space as large as possible. For exam-
ple, Gauss quadrature is constructed to make the largest value of n so
that all polynomials of degree n and below are integrated exactly. For
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functions defined on R an analog of polynomials is the space of entire
functions of exponential type.

Let Bσ′,2 be the space of entire functions of exponential type σ′, such
that their restriction on R belong to L2(R). It is appeared that there
are many various optimal methods of recovery in problem (1) (for k > 0
method (2) is one of them). We say that a method m is exact for a
function x(·) if

m

(
Fx∣∣∆σ

)
(·) = x(k)(·).

We pose the problem to construct an optimal recovery method which
will be exact for all functions from the space Bσ′,2 for the largest value
of σ′.

The same problem may be formulated in the equivalent form. Con-
sider an extension of W r

2 (R)

W r
2,σ′ = W r

2 (R) + Bσ′,2.

Are there such of them that the error of optimal recovery for W r
2,σ′ is

the same as for W r
2 (R)? What is the largest extension of this type?

Theorem 2. Let k, r ∈ N, k ≤ r − 1, 0 < σ ≤ ∞, and δ > 0. Set

σ̂′ =
(

r − k

r

) 1
2k

(
2π

δ2

) 1
2r

, σ′0 = min

{
σ̂′

σ̂
σ, σ̂′

}
.

Then for all 0 ≤ σ′ ≤ σ′0

Eσ(Dk,W r
2,σ′ , δ) = Eσ(Dk,W r

2 (R), δ).
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The method

(3) m̂(y)(t) =
1

2π

∫

|τ |≤σ′0

(iτ)ky(τ)eiτt dτ

+
1

2π

∫

σ′0≤|τ |≤σ0

(iτ)k

(
1 +

r

r − k

( r

k

) k
r−k

(
τ

σ0

)2r
)−1

y(τ)eiτt dτ

is optimal for the problem of optimal recovery of x(k)(·) on the class
W r

2,σ′ for all 0 ≤ σ′ ≤ σ′0.

Note that method (3) differs from (2) only by the fact that input data
do not smooth on the interval (−σ′0, σ

′
0). Nevertheless it has some good

properties. Method (2) is exact for functions from Bσ′0,2 and optimal
for the classes W r

2,σ′ for all 0 ≤ σ′ ≤ σ′0.
Now we proceed with the general setting of optimal recovery prob-

lem. We formulate also a theorem which is the basic tool to construct
optimal recovery methods.

Let X be a linear space, Y1, . . . , Yn be linear spaces with semi-inner
products (·, ·)Yj

, j = 1, . . . , n, and the corresponding semi-norms ‖ · ‖Yj

(‖x‖Yj
=

√
(x, x)Yj

), Ij : X → Yj, j = 1, . . . , n, be linear operators,
and Z be a normed linear space. We consider the problem of optimal
recovery of the operator T : X → Z on the set

Wk = { x ∈ X | ‖Ijx‖Yj
≤ δj, 1 ≤ j ≤ k, 0 ≤ k < n }

(for k = 0 we take W0 = X) from the information about values of
operators Ik+1, . . . , In given with errors. We assume that for any x ∈ W
we know the vector y = (yk+1, . . . , yn) such that

‖Ijx− yj‖Yj
≤ δj, j = k + 1, . . . , n.

Knowing the vector y we want to recover Tx.
Here δj > 0, j = 1, . . . , k, characterize a priory information about an

element x ∈ X, and for j = k + 1, . . . , n they characterize a posteriori
information about the same element. Further we will see that dual
extremal problems connected with optimal recovery problems “do not
distinguish” these two type of information. Thus it is convenient to
have some symmetry in notation of these types of information.

Any operator m : Yk+1 × . . . × Yn → Z is admitted as a recovery
method. The value

e(T, Wk, I, δ,m) = sup
x∈Wk

sup
y=(yk+1,...,yn)∈Yk+1×...×Yn

‖Ijx−yj‖Yj
≤δj , j=k+1,...,n

‖Tx−m(y)‖Z

is called the error of recovery of the method m (here I = (I1, . . . , In),
δ = (δ1, . . . δn)). We are interested in the value

E(T, Wk, I, δ) = inf
m : Yk+1×...×Yn→Z

e(T, Wk, I, δ,m)



6 G. G. MAGARIL-IL’YAEV, K. YU. OSIPENKO

which is called the error of optimal recovery. A method delivering the
lower bound is called optimal.

The considered problem of optimal recovery is closely connected with
the following extremal problem (we shall call it the duality extremal
problem)

(4) ‖Tx‖2
Z → max, ‖Ijx‖2

Yj
≤ δ2

j , j = 1, . . . , n, x ∈ X.

Now we formulate the main result.

Theorem 3. Assume that there exist λ̂j ≥ 0, j = 1, . . . , n, such that
the value of the extremal problem

(5) ‖Tx‖2
Z → max,

n∑
j=1

λ̂j‖Ijx‖2
Yj
≤

n∑
j=1

λ̂jδ
2
j , x ∈ X,

is the same as in (4). Moreover, assume that for all y = (y1, . . . , yn) ∈
Y1 × . . .× Yn there exists xy = x(y1, . . . , yn) which is a solution of the
extremal problem

n∑
j=1

λ̂j‖Ijx− yj‖2
Yj
→ min, x ∈ X.

Then for all k, 0 ≤ k < n,

E(T, Wk, I, δ) = sup
x∈X

‖Ijx‖Yj
≤δj , j=1,...,n

‖Tx‖Z

and the method

m̂(yk+1, . . . , yn) = Tx(0, . . . , 0, yk+1, . . . , yn)

is optimal.

Now we apply these result to optimal recovery of solutions of evolu-
tionary equations. Suppose that we can observe (with a known accu-
racy) the temperature of some object at the times t1, . . . , tn. What is
the best possible way to use this information to recover the temperature
of the object at the time τ 6= ti, 1 ≤ i ≤ n?

The equation of heat-conduction for an infinite rod is given by

(6)
∂u

∂t
=

∂2u

∂x2

with the initial temperature distribution

(7) u(0, x) = u0(x).

We assume that u0(·) ∈ L2(R). The unique solution of problem (6)–(7)
is the Poisson integral

(8) u(t, x) =
1

2
√

πt

∫

R
e−

(x−ξ)2

4t u0(ξ) dξ, t > 0.

Moreover, u(t, ·) → u0(·) in the L2(R)-metric as t ↓ 0.



OPTIMAL RECOVERY OF FUNCTIONS 7

We state the following problem. Suppose that we know temperature
distributions u(t1, ·), . . . , u(tn, ·) (at the times 0 ≤ t1 < . . . < tn) with
some accuracy. More precisely we know functions yi(·) ∈ L2(R), i =
1, . . . , n, such that

‖u(ti, ·)− yi(·)‖L2(R) ≤ δi,

where δi > 0, i = 1, . . . , n.
What is the best way to use this information to recover the temper-

ature distribution of the rod at the time τ 6= ti, 1 ≤ i ≤ n, that is to
recover the function u(τ, ·)? It is more convenient to give the answer
for the question “How to use the given information in the best way” in
a quite more general situation.

Let d be a natural number and ψ(·) be a continuous real function on
Rd such that

sup
ξ∈Rd

ψ(ξ) = +∞ and inf
ξ∈Rd

ψ(ξ) = a > −∞.

Set

Lψ
2 (Rd) =

{
x(·) ∈ L2(Rd) :

∫

Rd

ψ2(ξ)|Fx(ξ)|2 dξ < ∞
}

,

where F is the Fourier transform in L2(Rd). Define the operator

A : Lψ
2 (Rd) → L2(Rd) as follows

Ax(·) = F−1(ψ(·)Fx(·))(·),
where F−1 is the inverse Fourier transform.

Let x0(·) ∈ L2(Rd). Consider the abstract Cauchy problem

dx

dt
+ Ax = 0,(9)

x∣∣t=0
= x0(·).(10)

By the solution of this problem we mean the differential function t →
x(t, ·) on (0,∞) with values in Lψ

2 (Rd), which satisfies equation (9) and
x(t, ·) → x0(·) in L2(Rd) as t ↓ 0.

It is easy to check that the unique solution of problem (9)–(10) is
the function

(11) t → Pψ
t x0(·) = F−1(e−ψ(·)tFx0(·))(·).

In particular, if ψ(ξ) = |ξ|α where |ξ| =
√

ξ2
1 + . . . + ξ2

d and α > 0,
then (11) is the solution of the generalize equation of heat-conduction

dx

dt
+ (−∆)α/2x = 0,

x∣∣t=0
= x0(·).

If α = 2 and d = 1, then (11) is the solution of (6)–(7).
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We state the problem of optimal recovery of the solution of problem
(9)–(10) as follows. Assume that we know approximate solutions of
this problem at the times 0 ≤ t1 < . . . < tn, that is, we know functions
yj(·) ∈ L2(Rd), j = 1, . . . , n, such that for some x0(·) ∈ L2(Rd)

‖Pψ
tj x0(·)− yj(·)‖L2(Rd) ≤ δj, j = 1, . . . , n,

where δj > 0, j = 1, . . . , n. Using this information we have to recover
the solution at the time τ 6= tj, that is, the function Pψ

τ x0(·).
We consider arbitrary mappings m : (L2(Rd))n → L2(Rd) as methods

of recovery. The error of the method m is defined as follows

e(τ, A, δ,m)

= sup
x0(·)∈L2(Rd),y(·)∈(L2(Rd))n

‖P ψ
tj

x0(·)−yj(·)‖L2(Rd)
≤δj , j=1,...,n

‖Pψ
τ x0(·)−m(y(·))(·)‖L2(Rd)

(here δ = (δ1, . . . , δn), y(·) = (y1(·), . . . , yn(·))).
We are interested in the value

(12) E(τ, A, δ) = inf
m : (L2(Rd))n→L2(Rd)

e(τ, A, δ,m),

which is called the error of optimal recovery and in the method m̂, for
which the infinum is attained that is in the method m̂ for which

E(τ, A, δ) = e(τ, A, δ, m̂).

We call this method the optimal recovery method.
Note that this approach was initiated by A. N. Kolmogorov who

in 30’s years of the previous century began to consider problems of
the best tools of approximation for all functions from a given class of
functions.

To formulate the result we give preliminary definitions. Consider the
set

M = co{ (tj, ln(1/δj)), 1 ≤ j ≤ n }+ { (t, at) | t ≥ 0 },
where co A is a convex hull of A. Define the function θ(·) as follows

θ(t) = max{ x | (t, x) ∈ M }.
It is clear that θ(·) is a polygonal line on [t1,∞) and its points of break
ts1 < . . . < tsk

are a subset of {t1, . . . , tn} (see Fig. 2).

Theorem 4. For all τ ≥ 0 the following equality

E(τ, A, δ) = e−θ(τ)

holds. If tsj
< τ < tsj+1

, then the method

m̂(y(·))(·) = (Ksj
∗ ysj

)(·) + (Ksj+1
∗ ysj+1

)(·),
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is optimal; here

FKsj
(ξ) =

λsj
e−ψ(ξ)(τ−tsj )

λsj
+ λsj+1

e−2ψ(ξ)(tsj+1−tsj )
,

FKsj+1
(ξ) =

λsj+1
e−ψ(ξ)(τ+tsj+1−2tsj )

λsj
+ λsj+1

e−2ψ(ξ)(tsj+1−tsj )
,

λsj
=

tsj+1
− τ

tsj+1
− tsj

(
δsj+1

δsj

) 2(τ−tsj )

tsj+1−tsj

,

λsj+1
=

τ − tsj

tsj+1
− tsj

(
δsj

δsj+1

) 2(tsj+1−τ)

tsj+1−tsj

.

If τ > tsk
, then the method

m̂(y(·))(·) = Pψ
τ−tsk

ysk
(·)

is optimal.

For ψ(ξ) = |ξ|2 this Theorem is proved in [2].
We give the scheme of obtaining optimal recovery method of the

solution for the abstract Cauchy problem. First we consider the dual
extremal problem
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‖Pψ
τ x(·)‖2

L2(Rd) → max, ‖Pψ
tj x(·)‖2

L2(Rd) ≤ δ2
j , j = 1, . . . , n,

x(·) ∈ L2(Rd).

Passing to Fourier transforms and using the Plancherel theorem this
problem can be rewritten in the form

1

(2π)d

∫

Rd

e−2ψ(ξ)τ |Fx(ξ)|2 dξ → max,

1

(2π)d

∫

Rd

e−2ψ(ξ)tj |Fx(ξ)|2 dξ ≤ δ2
j , j = 1, . . . , n, x(·) ∈ L2(Rd).

Since there is no existence of solution for this problem we consider
the extension of it to the set of positive measures on Rd, replacing
(2π)−d|Fx0(ξ)|2 dξ by a positive measure dµ(ξ):

(13)

∫

Rd

e−2ψ(ξ)τ dµ(ξ) → max,

∫

Rd

e−2ψ(ξ)tj dµ(ξ) ≤ δ2
j , j = 1, . . . , n, dµ(ξ) ≥ 0.

For this problem the Lagrange function has the following form

L(dµ(·), λ) = −
∫

Rd

e−2ψ(ξ)τ dµ(ξ) +
n∑

j=1

λj

(∫

Rd

e−2ψ(ξ)tj dµ(ξ)− δ2
j

)
,

where λ = (λ1, . . . , λn). We find the Lagrange multipliers λ̂1, . . . , λ̂n

(it appears that there are not more than two of them which are not
vanishing). Then for the fixed functions y1(·), . . . , yn(·) we consider the
extremal problem

(14)
n∑

j=1

λ̂j‖Pψ
tj x(·)− yj(·)‖2

L2(Rd) → min x(·) ∈ L2(Rd).

The method

m̂(y) = Pψ
t x̂(·),

where x̂(·) is the solution of (14) is an optimal method of recovery.
Now let us consider the periodic case. Thus we consider the heat

equation

(15)
∂u

∂t
=

∂2u

∂x2

with the initial data

(16) u(t, 0) = u(t, π) = 0, u(0, x) = u0(x).
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The solution of this problem is given by the series

u(t, x) =
∞∑

k=1

bk(u0(·))e−k2t sin kx,

bk(u0(·)) =
2

π

∫ π

0

u0(x) sin kx dx.

Denote by W r
2 ([0, π]) the Sobolev class of functions on [0, π]:

W r
2 ([0, π]) = {u(·) : u(r−1)(·) abs. cont. on [0, π],

‖u(r)(·)‖L2([0,π]) ≤ 1 }.
We are interested in the recovery of the solution of (15)–(16) at some

fixed time τ , provided that u0(·) ∈ W r
2 ([0, π]) and we know the vector

b(u0(·)) = (b1(u0(·)), . . . , bn(u0(·))) of the first n Fourier coefficients of
u0(·) with some accuracy δ, namely, we know a vector y = (y1, . . . , yn)
for which

‖b(u0(·))− y‖ln2
=

√√√√
n∑

k=1

|bk(u0(·))− yk|2 ≤ δ.

As above we consider arbitrary mappings m : Rn → L2([0, π]) as
methods of recovery. The error of the method m is defined as follows

e(τ, W r
2 ([0, π]), n, δ,m) = sup

u0(·)∈W r
2 ([0,π]), y∈Rn

‖b(u0(·))−y‖ln2
≤δ

‖u(τ, ·)−m(y)(·)‖L2([0,π]).

We are interested in the value

(17) E(τ, W r
2 ([0, π]), n, δ) = inf

m : Rn→L2([0,π])
e(τ, W r

2 ([0, π]), n, δ,m),

which is called the error of optimal recovery and in the optimal method
m̂, for which the infinum is attained.

The following result is obtained in [3].

Theorem 5. If 0 < δ < 1, then

E(τ,W r
2 ([0, π]), n, δ) = e−τ

√
δ2 +

1− δ2

(n + 1)2r
e−2τn(n+2)

and the method

m̂(y)(x) =
n∑

k=1

(
1 +

k2r

(n + 1)2re2τn(n+2) − 1

)−1

yke
−k2τ sin kx

is optimal. If δ ≥ 1, then

E(τ, W r
2 ([0, π]), n, δ) = e−τ

and m̂(y)(·) = 0 is an optimal method.
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To find an optimal method of recovery for problem (17) we consider
the dual problem

‖u(τ, ·)‖2
L2([0,π]) → max, ‖b(u0(·))‖2

ln2
≤ δ2, ‖u(r)

0 (·)‖2
L2([0,π]) ≤ 1

Using Parseval’s identity, this problem can be rewritten as
∞∑

k=1

b2
k(u0(·))e−2k2τ→ max,

n∑

k=1

b2
k(u0(·)) ≤ δ2,

∞∑

k=1

b2
k(u0(·))k2r ≤ 1.

Denoting by uk = bk(u0(·)), we obtain the following problem of linear
programming

∞∑

k=1

uke
−2k2τ → max,

n∑

k=1

uk ≤ δ2,

∞∑

k=1

ukk
2r ≤ 1, uk ≥ 0.

It is easy to find the solution of this problem and the corresponding

Lagrange multipliers λ̂1, λ̂2. Then for a fixed vector y = (y1, . . . , yn)
we consider the extremal problem

λ̂1‖b(u(·))− y‖2
ln2

+ λ̂2‖u(r)(·)‖2
L2([0,π]) → min .

Let û(·) be the solution of this problem. Then the method

m(y)(·) =
∞∑

k=1

bk(û(·))e−k2τ sin kx

is optimal.
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