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1. General setting

Let T be a nonempty set, X be the o-algebra of subsets of T, and i be a nonnegative o -additive
measure on X. We denote by L,(T, X, ) (or simply L, (T, 1)) the set of all ¥'-measurable functions
with values in R or in C for which

1/p
X eyt = (f [x(O)P du(t)) <00, 1=<p<oo
T
1X(H Lo (T.0) = €SS STUP [x(t)] < 00, p=o00.
te

Put
W= {x(-) € Ly(T, w) : lo(x() I, r.p) < 00},
W ={x() € W:lloOxOlaw < 1},

where 1 < p,r < oo, and ¢(-) is a measurable function on T. Consider the problem of recovery
of operator A: W — Ly(T, u), 1 < q < oo, defined by equality Ax(-) = ¥ (-)x(:), where ¥ (-)
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is a measurable function on T, on the class W by the information about functions x(-) € W given
inaccurately. More precisely, we assume that for any function x(-) € W we know y(-) € L,(To, i),
where Ty is not empty p-measurable subset of T, such that [|x(-) — y(-)lL,p.) < 6,8 > 0. We want
to approximate the value Ax(-) knowing y(-).

As recovery methods we consider all possible mappings

m: Ly(To, ) = Lo(T, p).
The error of a method m is defined as

e(p,q,r,m) = sup 1 Ax() — m@) )iy
x(eEW, y()eLp(Ty,n)
IXO =YL (7 1) <6

The quantity
E(p.q,1) = inf e(p,q,r,m) (1)

m: Lp(To, p)—Lg(T, 1)
is known as the optimal recovery error, and a method on which this infimum is attained is called
optimal.

Various settings of optimal recovery theory and examples of such problems may be found in
[11,12,17,18,15,13]. Much of them are devoted to optimal recovery of linear functionals. There are
not so many results about optimal recovery of linear operators when non-Euclidean metrics is used
[12, Theorem 12 on p. 45], [6,14]. In [14] we considered problem (1) when any two of p, q, and r
coincide. Here we analyze the case when all metrics can be differentand 1 < q < p,r < oco. We
construct optimal method of recovery, find its error, and apply this result to obtain exact constants in
Carlson type inequalities. The case p = oo and/or r = oo requires a slightly different approach. Some
particular results of such kind may be found in [8] (T = Z) and [9] (T = R).

2. Main results

Let xo(-) be the characteristic function of the set Ty:

o 1, teT,
XO(t) - {0’ t ¢ To.

Theorem 1. et 1 < q < p,r < 00, A1, A3 > 0, A1 + Ay > 0, ¢(t) # O foralmostallt € T \ Ty,
X(t) =X(t, A1, A2) > 0 be a solution of equation
= qlY O + prAixPTI(E) xo(£) + rizle®)['x7(t) =0, (2)

and A, Ay such that

X () du(t) < 8, flw(f)lr?r(t) du(t) = 1,

To

T
M( X() du(t) — 5p> =0, Az(/ lp@O1X (t) dpa(t) — 1) =0,
To T

and Ay > 0,if T\ To # @. Then

1/q
E(p.q.r) = (M) ,
q
and the method
= _ a7 oA @@l o)1 (Dy (), t € To, Y(t) #0,
mQ)(t) = {O, ] other(\]/vise, (4)

is optimal recovery method.
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To prove this theorem we need some preliminary results.

Lemma 1.

E(p,q.1) > ?ugv | AX(H g (T.0)- (5)
Hx(-wXL;;O, =5

The lower bound of type (5) is the well-known result which is usually applied to obtain the error of
optimal recovery. In more or less general forms it was proved in many papers (see, for example, [ 14]).

The extremal problem which arises on the right-hand side of (5), known as the dual problem, may
be written as

||1/f(’)x(')||Lq(T,u) — max, ”X(')”LP(TO,H) <34,

leOxC Nl < 1. (6)

ForTo = T C R"and g = 1 problem (6) was examined in [2] in connection with Stechkin’s problem.
We give a straightforward result (resembling the sufficient conditions in the Kuhn-Tucker
theorem), which we will require in solving dual problems similar to (6).
Letfi: A— R,j=0,1,...,n, befunctions defined on some set A. Consider the extremal problem

fo(x) > max, fix) <0, j=1,...,n, x €A, (7)
and write down its Lagrange function

L6 = =) + Y MK, A= (... h).

=1

Lemma 2 ([14]). Assume that there exist 1\, > 0,j=1,...,n and an element X € A, admissible for
problem (7), such that

o~

(@rﬂ@@@:£@ﬂ,i:m“wﬂL
b Y W@ =o0.
=1

Then'X is an extremal element for problem (7).
Put
Fu,v,a) = —((1—a)u+av)! +av’ +bu", u,v>0, a€l0,1],
wherea,b > 0,and 1 <p, q,r < oo.

Lemma 3. Foralla,b > 0,a+b > 0,andall 1 < q < p,r < oo, there exists the unique solutionU > 0
of the equation

—q+pau’~ +rbu""1 = 0. (8)
Moreover, forallu,v > 0and o = ¢~ 'pau?~9 =1 — g~ 'rbu 9

FW,u, o) <F(u, v, a). (9)
In particular, for allu > 0

W+ au? + bu" < —u?+auP + bu".

Proof. The existence of the unique solution of (8) follows from the fact that the continuous function
f @) = pauP~9 + rbu"~9 increases monotonically from 0 to 4-co.
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Let us prove (9). The casesa = 0 or b = 0 are easily obtained by finding the minimum of
F(u,v,0) = —u?+ bu" ifa = 0Oor F(u,v,1) = —v? + av? if b = 0. Assume that a, b > 0. Then
a € (0,1). Let

C > max{a_ﬁ,b_ﬁ}.
Then for u > C and v < u we have

F(u,v,a) > —ul +bu" =ul(—=1+bu""% > 0. (10)
Ifv > Candv > u, then

F(u,v,a) > —v!+av? =vi(—1+ a9 > 0. (11)
Since F(0, 0, ) = 0 we obtain that

inf F(u,v,a) = Oinfc F(u,v, ).

2 <u<
(u,v)eRY 0=v=C

It follows from the Weierstrass extreme value theorem that there exist 0 < ug < Cand0 < vy < C
such that

inf  F(u, v, @) = F(up, vo, ).
(u,v)elRi

In view of (10) and (11) ug < C and vy < C. We have

Fy(u,v,a) = —q((1 —e)u+ av)?'(1 — ) + rbu"™!
=rb(—((1 —)u+av) T u .

Thus, for any vy > 0 and sufficiently small u > 0 F,(u, vy, @) < 0. Consequently,
F(u, vo, @) < F(0, vo, @)

for sufficiently small u. It means that 0 < uy < C. The similar arguments show that 0 < vy < C.
Hence

Fu(UOs Vo, a) = Fv(u(]s Vo, C() =0.
Since

Fo(u, v, ) = —q((1 — )u + av)? "o + pavP™!
= pa(—((1 — @)u + av)I~ WP~ 4 P

we have
—((1 = a)up + @)™ T +uy' =0, (12)
—((1 — a)up + avg) WP+ ) =0. (13)
Consequently,
-1
ug P
p—1
Yo

Suppose that p < r. Substituting

r—p p—1

Up ur-1 voT (14)

into (13), we obtain the equality

~r=p p=1 — —
(@vo + (1 — @) i1 =111~ = op 7.
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This equality may be rewritten in the form

(@+(1—a)tr1)i=! = pa, (15)

where t = vou~ L. It is easily seen that (15) has the unique solution t = 1. Consequently, vy = @ and
it follows by (14) that uy = 1.
If p > r, then we substitute

p— r

.
Vg = upr—tugpr-

into (12). Similar to the previous case we obtain the equality which may be written in the form

(@siT +1—a)t~ 1 =s9, (16)

where s = uou~!. The unique solution of (16) is s = 1. Thus, for the case when p > r we have the
same solution of (12), (13) ug = vy = u. Hence, forallu, v > 0

Fu,v,a) > inf F(u,v,0) =FW, 0, a). O
(u,v)e]R2+

Proof of Theorem 1. 1. Lower estimate. The extremal problem (6) (for convenience, we raise the
quantity to be maximized to the gqth power) is as follows:

f W (OO du(t) — max, f X(O duu(t) < 8,
T To

f OO duo) < 1. (17)
T

The Lagrange function for this problem reads as

°C(X(')a )"17 )"2) = /L(t’ X(t)7 )"15 )"2) dﬂ(t),
T
where
L(t, %, A1, A2) = =¥ (Ox]T + 21x[P x0 () + A2 |@(D)x]".
Ift € T such that ¥ (t) = 0, then evidently X(t) = 0 and for those t for all x(-) € ‘W
L(t, 0, A1, A2) < L(t, x(t), A1, A2).

Using this fact and Lemma 3, we obtain that there is the unique solution’X(-) of (2) and, moreover, for
almostallt € Tand allx(-) € W

L(£,X(t), A1, A2) < L(t, X(t), A1, A2).
Consequently,
LR, My A2) < LK), My Az)-

Taking into account (3) we obtain by Lemma 2 thatX(-) is the extremal function in (17). It follows by
(5) that

1/q
E(p,q,1) = </|W(t)|q?q(t)du(t)> .
T
From (2) we have

[ (O|I(t) = g pAiR” () x10 (8) + @ T2l (O]"X (D).
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Integrating this equality over the set T, we obtain

pA1SP + 1A
/wwmwwm=—i—i. (18)
T
Thus,
A8+ i)
E(p,q,r)z<pi1 +r2> .
q

2. Upper estimate. To estimate the error of method (4) we need to find the value of the extremal
problem:

[Y (Ox(t) — ¥ (Oa @Oy du(t) + f\ [¥ (Ox(0)|* du(t) — max,
To T\Ty

/wm—wmwmosﬂ /W@MMWMDSL (19)
To T
where
_ a1, teTo, ¥t #0,

a(t) = :0, ' other(i/vise. (20)

Taking
x(t) —y(t), teTy,
Z(t) = {O, te TO\ TO,

we rewrite (19) as follows:

f [ O11(1 = a(©)x(t) + a(O)z(t)|? du(t) — max,
T

0P du® <8, [ lorl du) < 1.
To T
The value of this problem does not exceed the value of the problem

/ﬂwan%m-—a@»u@)+a@h40ﬁdu@)—»nmx
T

/memsﬁ, /WMW®W®§L
To T

u(t) >0, v(t) >0 foralmostall t €T. (21)

The Lagrange function for this problem is

°C1(u(')a U(’), M1, MZ) = /Ll (t9 u(t)! U(f), M1, MZ) d,bL(t),
T

where
Lit,u, v, pa, o) = =[O — a(@©)u +a(t)v)?
+ 110" x0(8) + p2le (O] "u".
By Lemma 3 we have
Li(t,X(t), X(t), A1, A2) < Li(t, u(t), v(t), A1, A2).
Thus,
L1XC), X(), A, Aa) < L1, v(), Ay A2).



K.Yu. Osipenko / Journal of Complexity 32 (2016) 53-73 59

It follows by Lemma 2 that functions u(t) = v(t) = X(t) are extremal in (21). Consequently,

1/q 1/q
e, g, ) < ( / WO du(ﬂ) _ ("“‘qu““) <E(@.q 1)
T

It means that the method (4) is optimal and the optimal recovery error is as stated. O
Note that if conditions of Theorem 1 hold we proved the equality
E(p,q,7) = sup 19 X lLger, - (22)

X)Ly (g, 1) <8
leOXO L (7,0 =1

Corollary 1. Let 1 < q < p,r < 00, ¢(t) # 0 for almostallt € T, and
qr P
—q )9\ —a
</ ! du(t) < oo, f (W( )| ) ! du(t) < oo.
T 7 \ @O
Then for all
1/p
w©
(fro (\w(rtw) d’“”)

A0) ‘JTVq v
fT Gl du(t)

qr r—q

Y(t)|—a )7

E(p,q, 1) = — du(t ,
(p,q,1) (/T ) wu(t)

and the method m(y)(t) = 0 is optimal recovery method.
Proof. It suffices to check that A; = 0 and

A = q(/ LAON i cm(t))T
r\Jr

@)
satisfy the conditions of Theorem 1. O

w0

Corollary 2. et 1 < q < p,r <00, Tg =T, and

0<f|¢(t)|f||w(r>|% du(t) < oo, fw(t)% du(t) < 0.
T T

Then for all
1/p
(fT W (0)|7a du(t)>

o 1/r
(fT lpO" [ (t)[ = du(t)>

P—q

qp_ ap
E(p.q,1) = 8(/ [¥ ()| P~ dpb(t)) ;
T

and the method m(y)(t) = ¥ (t)y(t) is optimal recovery method.
Proof. It suffices to check that

= q<f|w<t)|v qdu(t)>

and A, = O satisfy the conditions of Theorem 1. O

s <

P*q

A=
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Note that assumption (3) need not be satisfied in all cases. For example, in the trivial case § = 0,
To = T, and v (t) = 1 there are no such X; and A, which satisfy (3).
Let us consider the problem of optimal recovery of the linear functional

LX=/1/f(t)X(f) dp(t)
T

on the class W, knowing y(-) € Ly(To, ), To C T, such that [|X(-) — y()ll, ) < 8,8 > 0. 1In this
case as recovery methods we consider all possible mappings m: L,(To, u) — C or R. The error of
a method m is defined as
ei(p,r,m) = sup ILx —m(y)].
X()eW, y()elp(Ty, 1)
HX(')*y(')||Lp(TOYM)§5

The quantity

Ei(p,1) = inf ei(g,r,m) (23)
m: Lp(To, u)—>C(R)

is optimal recovery error, and a method on which this infimum is attained is called optimal.

Theorem 1. Let 1 < p,r < 00, A1, Ay = 0, A1 + Ay > 0, ¢(t) # 0 foralmostallt € T \ Ty,
X(t) =X(t, A1, A2) > 0 be a solution of equation

=¥ O]+ X"~ (O x0(t) + A2l p(O'x () = 0,

and Aq, Ay such that conditions (3) are fulfilled, and A, > 0,if T \ To # @. Then
Ei(p, 1) = pridP + 1,

and the method

m@y) = piq f D)y () du(t), (24)
To
where
Y ()
8([’) — m’ 1//(f) # Oa
1, Y(t) =0,

is optimal recovery method.

Proof. For the functional case it is known (see, for example, [7]) that

/w(t)X(t) dp(t)
T

Ei(p,1) = sup
(ew

X
[IX¢-) HLP(TOJL) <4

PutX(-) = ()X(-). It follows by (3) that X(-) € W and |[X() 1,7,y < 8. Taking into account (18), we
obtain

Ei(p,1) =

/ Y (OX(t) du(t)
T

= / [ (0)[X(t) dp(t) = pri8P + 1Ay,
T

Now we estimate the error of method (24). We have

e (p’ r, m) = sup
x(EW, y()elp(Tg. )
)=y Ol (1g,0) <8

/ YO du(t) — )
T

IA

sup / WO — a()x(t) + a()z(t)| du(t),
X(EW, z(elp(To.p) JT
||Z(')|\LP(TO,,L)S5
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where «(+) is defined by (20) for g = 1. It follows from the proof of Theorem 1 that

Ei(p, 1) <ei(p,r,m) E/Iw(t)ﬁ(t)du«(t)=p)\18”+rkz. O
T

One can easily obtain analogs of Corollaries 1 and 2 for problem (23).

3. The case of homogeneous weight functions

Let T be a cone in a linear space, To = T, |¥(-)| and |¢(-)| be homogeneous functions of degrees
n, v, respectively, ¢(t) # 0 and ¥ (t) # O for almost all t € T, and u(-) be a homogeneous measure

of degree d. We assume, again, that 1 < p < q,r < oco. For k € [0, 1) the function kﬁ 1- k)_ﬁ
increases monotonically from 0 to +oc. Consequently, for all z € T such that ¢(z) % 0and ¥ (z) # 0
(if p < r), there exists k(z) for which

1 q(p—r)

kr=1(z) |¥ (2)| P-0T—0
T T
(1—k(z))=a lp(2)]| ™4

Thus, the function k(z) is well defined for almost all z € T.

(25)

Theorem 2. et 1 < q < p,r < 00, p(t), ¥(t) # 0 foralmostallt € T,and v 4+ d(1/r — 1/p) # 0.
Assume that

I =/|w<z>|%kﬁ<z)du<z> < oo,
T

ar_ _r_
b= / V@)% 1@ k75 (2) dpu(2) < oo
T
Then
E(p,q,1) =81, (1 4 )Y,
where

_v—n—d(l/qg—1/r)
Y T da =) (26)

and the method
my)(t) = kEOY(Oy(L),

where

1
£ = (81;1/17121”) VRICE=TR) (27)

is optimal recovery method.

Proof. Put
1

) = <Q|1ﬁ(f)|q>” a kﬁ(&t),
pA

where 1; > 0 will be specified later. We show that’X(-) satisfies (2), where

q(p—r)

do = r17"qra (pay)rd £ (28)
We have
PARPTI() = gl (0)]7k(EL),
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and further,

qw,(mq);:g
PAq

Since |¢(-)| and |y (-)| are homogeneous it follows by (25) that

kP4 (£t).

rAale®X () = razle®)] (

qa(p—r) q(p—r)
g D] e [0
kv q(ff)—W(l—k(ff))—é p=q W(l—k(é&f))
Thus,
FAalp@®FIE) = ri, (ﬁl) 75 T Iy (0]9(1 — k(ED)

qly(O17(1 = kED) = qly(O)]T — prAx" (D).
Now we show that for
P—q _
by = A1, 7 gmad o (29)
p
the equalities

f () du(t) = &, / 0 (OIR (O dut) = 1
T T

hold. In view of the definition of X(-) we need to check that

b
/ (q“";i?'q)” "1 &0 du(t) = 8,
T

)4 ;
/Iso(t)lr <q|1//( ) )p ! kP (£t) du(t) = 1.
T PA1

Changing z = &t and taking into account that functions |y ()|, |¢(-)| with the measure w(-) are
homogeneous, we obtain

p

(i> " = e

P

(i)ﬁ I = §%+ur+d'

P

The validity of these equalities immediately follows from the definitions of A; and &.
It follows by Theorem 1, (27)-(29) that

.

P p=q - y
Eq(p, q,r) = M — 11 P ;’_-*andeqsq n (&)P q %—W*ﬂ%
9 q

- 5qy11—qy/p12—q(1—y)/r(h +1).

—-q

Moreover, the same theorem states that the method

mE)(©) =g~ PR IO O] Y (O)y(©) = kEOY (O)y(L)

isoptimal. 0O
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It follows by Theorem 2 and (22) that for all x(-) € ‘W such that [[@(:)X(:)|l;,(r,,y < 1 the exact
inequality
(30)

1 OXO g = CIXKOT (7.0

holds, where

C = I;V/P[;U*V)/’ (I] + 12)1/(1.
(Here and later the exactness means that C cannot be replaced by any other constant smaller than C).

From (30) the following exact inequality can be easily obtained
1% X g = CIIX(-)IILVp(T,M)IIW(-)X(-)IIQ,}Ty,,t), (31)

which holds for all x(-) € W, x(-) # 0.
Let lw(-)|, |lwo(-)|, and |w1(-)| be homogeneous functions of degrees 6, 6y, and 6, respectively. We
assume that w(t), wo(t), wq(t) # 0 foralmostallt € Tand 1 < q < p,r < oo. Then for almost all

z € T such that w(z), wo(z), w1(z) # 0 there exists k(z) satisfying

ki) ‘ w(z) |77 |wo(2) |77
(1 —Kk@z)™ wi@ w(z)
Put
O =0 +d/p, 0, =0;+d/r. (32)

9 =06+d/q,
Corollary 3. Let 1 < q < p,r < o0, w(t), wo(t), wi(t) # 0 for almostallt € T, and 50 #* 51.Assume

that
~ w(z) Py
7= kr=1(z) du(z) < oo,
T wo(2)
aqr_
7= [ lw@lr w1 (2)|k7 (2) dpe(2) < oo.

12 pr |
T |wo(2) [P~
Then for all x(-) # 0 such that wo(-)x(-) € Ly(T, w) and w1 (-)x(-) € L. (T, ) the exact inequality
(33)

I OXO g < Clwo RO o w1 OXOILT,

holds; here
e e~ . -0
C=T"PL "I+ )", V=~

1

0 — 0o

Proof. Put
w(x) wi(X)
Y= —— e =—".
wo (X) wo (X)
Then | (-)| and |¢(-)| are homogeneous functions of degrees n = 6 —6y and v = 61 — 6y, respectively.
It follows by (31) that for all x(-) € W, x(-) # 0, the exact inequality

1 X ligery < CIXOIT e l9OXONET
holds. Substituting x(-) = wq(-)y(-), we obtain (33). O
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The well-known Carlson inequality [4]

1X(O) ey p) < VTIXON e 1K O . (34)
was generalized in many directions (see [5,1,3]). Inequality (33) is also a generalization of the Carlson
inequality.

Let1 <p <q,r < oo, T beaconeinR? du(t) = dt, |1 ()] and |¢(-)| be homogeneous functions
of degrees n, v, respectively, ¢(t) % 0 and v (t) # 0 for almost all t € T. Thus w(-) is a homogeneous
measure of degree d. Consider the polar transformation

X1 p CoS w1,
X, = psinw; cosw,,
= psinwysinw; . ..sinwy_, COS w4—_1,
X4 = psinw;sinw;...sinwy_» Sinwg_1.
Setw = (w1, ..., w4-1),

~

Y(w) = p "y (pcoswy, ..., psinw;sinw,...sinwyg_, sinwg_1)],
o(w) = p~ "|p(pcoswy, ..., psinw;sinw; . ..sinwy_ysinwg_1)].
Denote by £2 the range of w. Since T is a cone, £2 does not depend on p. Put

d—2 d-3 w

J(w) = sin®~* @; sin 5. .. Sinwy_s.

By (25) we obtain the following equality for k(-):

1 ~ _4(p=n)
kp—a , W nq(p—r)—vr(p—q) P-90-a9 (¢
# =p p—q)(r—q) u

1 ~ T
(1 —k(p, w))™1 (o)
Assume that y € (0, 1), where y is defined by (26). Put

1 1 y 1-y

It is easy to verify that ¢* > g > 1. Moreover,

 _ pqr(v +d(1/r —1/p))
vr(p—q) —nq(p—r)

Theorem 3. Let 1 < q < p, 1 < 00, ¥ € (0, 1), and ¢(w), J(a)) # 0 for almost all w € $2. Assume
that

I ; %](a)) dow < 00
Then

E(p,q,1) = G187,
where

B(q*y/p.q*(1 —y)/n)] )”"*
b+d1/r—1/plr+d—-pyp/)

where B(-, -) is the beta-function. Moreover, the method

_r 1y
G=y r(1—y) 7

m)(t) =k (s:*““/l’*”’” r) Y (DY),



K.Yu. Osipenko / Journal of Complexity 32 (2016) 53-73
where
q*
— — D—T\ pgr
E =8y -y iy,

is optimal recovery method.
Proof. Using Theorem 2, we obtain

I —fw(z)r” k% (2) dz

~ O w4 g
:/ wp’q(w)f(w)dw/ pr-1 T k=1 (p, w) dp.
2 0
By (36) we have

VT P-D=a—) (1 — k(p, @)’ Y 1%~ ()
k=i(p,w) ()
Fixing w, we pass to k

7 q(p—r ¢ _
dprsitd = lifq(" ) (w) d(1 — k)P
(%) k=02
~ . o
1pq(p r)(w) 6! _k)(p )¢—1
T (W(p_‘” (w) Kr—Dz+1 (r—q+ (p—nk)dk,
where
= ngp + d(p — q) g (1—)/)

P—rp—q@ —ngp—r)) rp—q
Consequently,
ngp |

+o0
f prat U (p, w) dp
0

_ +00
= L/ kP (p, w) dpi-a +
ngp+d—q) Jo

1 1:Ztl(p—r)( )
T rp—q) —ng(p—n)] ( PP (w)

) Ky + K>),

where

1
Ky = (r—q) / (11— k)T dk = (r — B® + 1,7),
0
1
K = (p— r)/ A — T dk = (p— NBG +2.9)

=pP-N==—B0+17,

+ +1
5= qgr(v—mn) —d@r —q) —¢Y = ngptdp—q _ 1-vy
vr(p—q) —nq(p — ) p’ vr(p—q) —nq(p — ) ro
Thus,
Ktk = pl P ”q(p BC+1ﬂ——BC+13
vpr +d(p —

a (v , 1-v\
:7(%*) 565,
q \p r

65

(38)
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The analogous calculations give
ar_ r_
b= [ W@ @0 @ du
T
4 ~ e 2L 4 yrd—1,,
= f Y- ()¢ ()] (@) do f pra k=2 (p, w) dp.
2 0
Fixing w, we pass to k

T q(p— ¢ _
dpritrd _ %q(p D)\ J4= k) P05
q)r(p*Q) (w) k(=&

~ ap—r) & _ ) P11
_§1<1//qp (w)) (1— k)P r—q+ (p— k) dk,

ar(pfq) (w) kr—a)¢1+1
where
6 = ngr + (vr +d)(p — q) _9a=-y L
e-QOrp—q@ —nqgp—1) rb—q@ p—q
We have

oo T fyrtd—1,, 51
/ PP~ T kP (0, w) dp
0
— oo r r
_ p—q / KPS (p. ) dp it
ngr+ r+d @ —q Jo
1 ({}q(z’r)(w)
Cre—q —ng(p— ) \ g9 (w)

&1
) (L1 + L),
where

1
L= (- Q)/ K1 = k)T dk = (r — 9B@. G+ 1),
0

1
Ly=@-— r)/ K1 —kidk=p—rB@+1,+1)
0

D R
={p—-r=——"——Bp.q+1).
» )p+q+1(5q )
Thus,
vrp—q) —nq(e —1) _ ~ ~ qar .
Li+L=r BP, G+ 1) = —B®, g+ 1
1+ L opr +d(p — 1) ®.q9+1) q*@q+)
ql—y) (v 1-y\"'
=——(>+—) B@®O.
q p r
We obtain
-1
4 y  1-vy
L= T+ B®, I,
! pr|v+d(1/r—1/p)|<p r) @D
1—y <7/ 1—1/)1
L = -+ — B®, QI.
prlv+d(1/r—1/p)| \p r

It remains to apply Theorem 2. O
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Note that ford = 1wehavel = 1whenT =R, and/ =2 whenT = R.

Assume that |w(-)|, |wo(-)|, and |wq(-)| are homogeneous functions of degrees 6, 6y, and 0,
respectively. Define w(-), Wo(-), w1(-) by the analogy with (35).

From Theorem 2 (analogously to Corollary 3) we immediately obtain

Corollary 4 ([3]"). Suppose that w(t), wo(t), wy(t) # O for almostallt € T,1 < q < p,r < 00,
y € (0, 1), where

57
Y=5 20

and 5, 50, and 51 are defined by (32). Moreover, assume that

T= / &j@) do < oo,
2

~qy ~q(1-y
wg)/(w)w;l( J/)(a))

where

Then the exact inequality
IwOXO g < Crllwo XL o o OXOILT,, (39)
holds; here

1=y

~ ~7Y PO
G=y r(1-y) 7 (

B@¥/p, 301 — 7)1 )‘ﬁ
161 — 6| (¥ + (1 —¥)p) '
Put

wot) =1,  wi(t) =t""HVP Ly (e) = ¢/,

From Corollary 4 we obtain

Corollary 5 ([5]). Let 1 < p,q < ocoand A, u > 0. Put

" A
o= —- = —
pu + g pu + g

Then the exact inequality
1-(A+1) pa T+H(pn—1) aB
Xl @y < Clit /"X(t)IILp(R+)IIt " /qX(t)lqu(R+>

holds; here

1 < 1 < o B ))]aﬂ
C= B i .
(o) @) \A+pu \1—a—B"1—a—-p

Using Theorem 1" and calculations from the proofs of Theorems 2 and 3 we obtain

1 The exact constant in [3] (formula (10)) was given with a misprint.
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Theorem 3'. Let 1 < p, 1 < 00, ¢(w), J(w) # 0 for almost all w € §2 and y, q*, 1, k(-), C4, &1 as above
but for q = 1. Assume that y € (0, 1) andI < oco. Then

Ei(p,r) = C187.

Moreover, the method

1
m(y) = / k (sr““”‘”‘” r) YOy () du(o)
T
is optimal recovery method.

4. Optimal recovery of functions from a noisy Fourier transform

Let S be the Schwartz space of rapidly decreasing C*°-functions on R, S’ the corresponding space of
distributions, and let F: S’ — S’ be the Fourier transform. We let F, denote the space of distribution
x(+) in S’ for which

1/p
IxC)llp = ( f |Fx(6) P dt) <00, 1<p<oo.
R

We set
Fl={x() eSS xM )]l < oo},
Fl = {x() € 7 [IXP ), < 1)

Assume that the Fourier transform of a function x(-) € F' N #, is known on R to within § > 0 in
the metric of L, (R). In other words, we know a function y(-) € L,(R) such that ||[Fx(-) —y(-)[lL,&) < 9.
How should we best use this information to recover the Ith derivative of the function in the metric %,
0 <1 < n? By recovery methods here we mean all possible mappings m: L,(R) — ;. The error of a
method is, by definition, the quantity

€p.q.r (M) = sup XD () = m@ O llg.

X()EFINFp, y()eLp(R)
IEC) =yl (Ag ) <3

The optimal recovery error is defined as follows:

E = inf e, g (m).
pa@.r m: Lp(R)— Fq bar

A method on which this lower bound is attained is called optimal.

Itis readily checked that this problem is a special case of the general problem (1) withT = Ty = R,
Y (1) = (i), o(t) = (ir)".

Thecases (1)1 <gq=r<p<00,2)1<qgq=p<r<o0,(3)1<qg=p=r < oo,and (4)
1 <q < p=r < ocowere studied in [14].

For the case 1 < q < p, r < oo we can apply Theorem 3. In this case

1
7kp ! (t) 1 = |t| Iq(lz;i)q;(zl(ﬁ;q) s y = —n — l — 1/q + 1/r
(l—k(f))q n+l/r—1/p
and I = 2.1tis easy to verify thatifn > [+ 1/q — 1/r,then y € (0, 1). Thus, it follows by Theorem 3.
Theorem4. let 1 < q <p,r <ocoandn > 1+ 1/q— 1/r. Then
Epqr = G187, (40)

where

2B(q"y /p, (1= )/1) )”‘**

_Y _ 1=y
G=y =y <(n+1/r—1/p><yr+<1—y)p>



K.Yu. Osipenko / Journal of Complexity 32 (2016) 53-73 69

and q* is defined by (37). Moreover, the method m(y)(:) = F”Yy(-) is optimal, where

1 ®
0 = @' (5777 y0, & = (7 = )

Note that case (4) immediately follows from Theorem 4 for p = r. In cases (1)-(3) the optimal
recovery error coincides with the limits lim,_, ¢ E, g r, lim,_.q Ep ¢ r, limp_, ¢ E, ¢ p, respectively, where
E, q.r is given by (40).

5. Optimal recovery of derivatives and generalized Carlson-Levin-Taikov inequalities

For functions x(-) € L(R) whose (n — 1)st derivative is locally absolutely continuous and
0 < k <n—1,L V.Taikov [ 16] obtained exact inequality

2n—2k—=1
KOO < KIXO 2 K07,

where

2k +1 B 2k +1 -1/2
K=—-— 2k + 1) sin .
(2n—2k—1> (( + 2n 71)

Passing to the Fourier transform we have the following equivalent inequality
2n—2k—1 2k+1
4n

1 k 1 2 1 2n 2 o
— | ey de| < kK — [ |Exo))? dt x (— [ "Fxo)? de
T Jr 27 R 27 R

Set g(t) = t*Fx(t). Then we obtain the following inequality
2n—2k—1 2k+1

/g(t) dt| < 1<Jﬂ</ c—2’<|g(r)|2dt> x (f t2<"-’<>|g(t)|2dr> "
R R R

Putp =q=2,A =2k+ 1,and u = 2n — 2k — 1. Then by Corollary 4 we have

o0 o0
/ gl de < c( / Hg(0)? dr)
0 0
where
_ 2k +1
“\2n—-2k—-1
Since

s(1 2k+1 2k+1 T
2n ’ n Sln 2k+1n

we have

c:ﬁ( 2k+1_1)

2n — 2k

2n—2k—1 2k+1
4n

o0 4n
([ erhisora) T
0

n—2k—1 2k+1
2n 2n )7

2n—2k—1
4n

2
(2k 4 1)""/?B'? (

2n—2k—1
4n

C2k4+1 \2
2k + 1) sin b4 .
n

From the inequality

a1b1 + azby < Zl_s_t(a:/r +a 1/r) (bl/s + bl/s)s
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it follows that

0 e8]
/Ig(t)ldt :f Ig(t)ldt+/ lg(t)] dt
R —00 0

0 2n—2k—1 0 2’51+1
sc( / t‘z"lg(r)lzdt) ( / t”“"“lg(t)lzdt>
+c(/ rz"|g<t)|2dt)
0

2n—2k—1 2k+1
2n—2k—1 2k+1
< 2c (/ =g dt)
R

([ eosisopa) ”
0
( / r”"‘">|g(t>|2dr> 4

R

Thus Taikov’s inequality follows from Levin’s inequality.

This inequality is closely connected with the problem of optimal recovery of derivatives from
inaccurate information about the Fourier transform (see [10]). We consider such problem in
multidimensional case.

Consider linear operators Dy : L,(RY) — L,(RY) N C(RY) and D, : Ly(RY) — L,(RY) (D; and D, are
not necessary differentiation operators). Put

W = {x() € LR : [D2x() Iy gy < 1)

We consider the problem of optimal recovery of D1x(t), T € R, on the class W from the information
about x(-), given inaccurately in L, (RY)-metric.

As recovery methods we consider all possible mappings m: L,(RY) — C or R. The error of a
method m is defined as

e(m) = sup ID1x(7) — m(y)|.
X(EW, y()ely (RY)
OOl (g, <8

The quantity

E= inf e(m) (41)
m: Ly(RY)—C(R)

is known as the optimal recovery error, and a method on which this infimum is attained is called
optimal.

For the case whend = 1, Dix(-) = x®(-), and Dox(-) = x™ (), 0 < k < n, similar problems were
considered in [10].

Let d;(t) and d5(-) be measurable functions on RY. Put

X = {x() € LR : ;(OFx() € LR}

We define the operator D, as follows
Dox(-) = F~ ' (d2 (-)Fx(-)) ().

Assume that d;(-)Fx(-) € L,(R?) for all x(-) € X and the operator D; which is defined by the equality
Dix() = F~H(di (Fx()) ()

maps X to L,(RY) N C(RY).
Let |d;(-)| and |d>(-)| be homogeneous functions of degrees k, n, respectively (k and n are not
necessarily integer), d;(t) # 0,j = 1, 2, for almost all t € RY. Put

di(w) = p~¥|di(p coswy, ..., psinw; sinw, . .. sin wg_s sin wy_1)|,

dy(w) = p "|dy(pcoswy, ..., psinw; SiNw, . ..sinwg_y Sinwy_1)].
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By Plancherel’s theorem we have

W= {x(~) € L(RY) : / |dy () Fx(t)|? dt < 1}

(2 )

1XC) = YOl ey = IFx(:) = Y ()l ma)-

@ )ﬂl/2

Moreover,

D]X(T) =

1 i(T,t)
G A OF(De ) dr,
R

where (7, t) = Tit; + - - - + T4tq. Thus we obtain problem (23)withp =1 = 2,8; = §2n)¥?,

V() = die™,  ot) = ——=da (D).

(2 ) 2m )"/2

By Theorem 3’ we have

Theorem 5. Let k > 0 and n > k + d/2. Assume that

d; (@)
I :/ Nliw](w) do < 0o, g1 =1[0,7]"% x [0, 27].
Iy

2k+d
-1dy " ()
Then
(JTI)]/2 ~2kd
(2 )d/de(k n)5
where
dkpd N\ 2%k+d \
Ky(k,n) = (m) <(2k + d) sin ™ 71) .

Moreover, the method
1

o1 822k + d) - i(e.t)
mly) = (zT)ded di(t) <1+ (27r)d(2n—2k—d)> y(©)et™t de

is optimal recovery method.

By this theorem analogous to (31) we obtain the exact inequality

(7 )12 2k +d
D] = (5o Katk MO, 2 10O,
or
1/2 2k
D)l uty < ((2 ))d/2 Kl mIXC) 2 1o, 2y (42)

Now we consider some examples. Define the operator (—A)"?,n > 0, as follows
(=A)"2x() = FH(It"Fe(@®) ().

Putd;(t) = |t|*and d,(t) = |t|". Then problem (41)is the problem of optimal recovery of (—A)*/?x(t)
on the class

= {x() € LRY : [(=A)"*X() |, rey < 1}

by the inaccurate information about x(-).
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By Theorem 5 we obtain

Corollary 6. Let n > k + d/2. Then

E=Ck 8™, Cikn) = Katk.
= U ’ di® - (Zd*17'[d/2*11“(d/2))1/2’

822k + d) ! -
k i(7,t)
/Rd It <] m)d(2n — 2k — d)) YO de

and the method

ﬁl =
o) )
is optimal.

By (42) we get the exact inequality

K2 2n—2k—d "2 2k+d
(= 22Xl ey < Catks IO B =22
Consider one more example. Let @ = («q, ..., 0q) € Zi. We define D* (the derivative of order )

as follows:
Dx(-) = F~'((i)*Fx(1)) (),

where (it)® = (it;)*1 - - - (ity)%. Let D; = D% and D, = (—A)"™2. Then (41) is the problem of optimal
recovery of D*x(t) on the class W by the inaccurate information about x(-).
From the well-known Dirichlet formula we have

XI]”_]...ng_ldX]...dXd I'(p1/2)...T'(pa/2)

4203420 S 2T (p/24 4 pa/2+ )]
x{+txg<1
D1, ..., Ppa > 0. Using this formula and passing to the polar transformation we obtain

I'(p1/2)...1'(pa/2)
T(/2+ - +pa/2)°

I(plv"'9pd):f (p(valvvpd)J(w)dw:z
gy

where
®(w, p1, ..., Pq) = |coswi P! sinwq coswy |27 x ...
x| sinw; sinw, . . . sin wy_s €O wg_q|P4=171
x| sinw; sinw; . . . sinwg_y sin wq_1|P4 1.
Thus for d;(t) = (it)* and d,(t) = |t|" we have
Flay+1/2) ... F(ag +1/2)

I=1Q2a;1+1,...,204+1) =2 s
(201 @+ (ol + d/2)

where |a| = a1 + - - - og.
Corollary 7. Let n > || + d/2. Then
2n—2|a|—d

E=Cio(m)d 20—,

where

Cd,a (Tl) =

Ke(lae|,n) (a1 +1/2)...Tag+ 1/2)\"?
(2)(d=1/2 I(|a| +d/2) '
and the method

1 » SQlal+d) Ty
m@)_an)d/n@(“) (1+<2n>d<2n—2|a|—d>) yerde

is optimal.
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The exact inequality in this case has the form:

2n—2|e|—d 2|a|+d

lo|
ID°XC) ety < Caa@IXO 2 1(=A)"2XC), 2,
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