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Abstract. The paper concerns problems of the recovery of differential op-

erators from a noisy Fourier transform. In particular, optimal methods are

obtained for the recovery of powers of generalized Laplace operators from a
noisy Fourier transform in the L2-metric.

1. Introduction

Let X be a linear space, Y,Z be normed linear spaces. The problem of optimal
recovery of the linear operator Λ: X → Z by inaccurately given values of the linear
operator I : X → Y on the set W ⊂ X is posed as a problem of finding the value

E(Λ,W, I, δ) = inf
ϕ : Y→Z

sup
x∈W, y∈Y
‖Ix−y‖Y ≤δ

‖Λx− ϕ(y)‖Z ,

called the error of optimal recovery, and the mapping ϕ on which the lower bound
is attained, called the optimal recovery method (here δ ≥ 0 is a parameter that
characterizes the error of setting the values of the operator I). Initially, this problem
was posed for the case when Λ is a linear functional, Y is a finite-dimensional space
and the information is known exactly (δ = 0), by S. A. Smolyak [1]. In fact,
this statement was a generalization of A. N. Kolmogorov’s problem about the best
quadrature formula on the class of functions [2], in which the integral and the
values of the functions are replaced by arbitrary linear functionals and there is no
condition for the linearity of the recovery method. Subsequently, much research has
been devoted to extensions of this problem (see [3]–[11], and the references given
therein).

One of the first papers in which the problem of constructing an optimal recovery
method for a linear operator was considered was the paper [4]. This topic was
further developed in the papers [12]–[20]. It turned out that in some cases it
is possible to construct a whole family of optimal recovery methods for a linear
operator. The study of such families began in [21] and continued in [22], [23], [15],
[20]. Some general approach to constructing of family of optimal recovery methods
was proposed in [24].

The aim of this paper is to construct families of optimal recovery methods for
powers of generalized Laplace operators and the Weil derivative from a noisy Fourier
transform in the L2-metric.
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2. Optimal recovery methods from a noisy Fourier transform

Let S be the Schwartz space of rapidly decreasing C∞-functions on Rd, S′ be the
corresponding space of distributions, and let F : S′ → S′ be the Fourier transform.
Set

Xp =
{
x(·) ∈ S′ : ϕ(·)Fx(·) ∈ L2(Rd), Fx(·) ∈ Lp(Rd)

}
.

We define the operator D as follows

Dx(·) = F−1(ϕ(·)Fx(·))(·).

Put

(1) Λx(·) = F−1(ψ(·)Fx(·))(·).

Consider the problem of the optimal recovery of values of the operator Λ on the
class

Wp =
{
x(·) ∈ Xp : ‖Dx(·)‖L2(Rd) ≤ 1

}
from the noisy Fourier transform of the function x(·). Assume that Λx(·) ∈ L2(Rd)
for all x(·) ∈ Xp. As recovery methods we consider all possible mappings
m : Lp(Rd)→ L2(Rd). The error of a method m is defined by

ep(Λ, D,m) = sup
x(·)∈Wp, y(·)∈Lp(Rd)
‖Fx(·)−y(·)‖

Lp(Rd)
≤δ

‖Λx(·)−m(y)(·)‖L2(Rd).

The quantity

(2) Ep(Λ, D) = inf
m : Lp(Rd)→L2(Rd)

ep(Λ, D,m)

is called the error of optimal recovery, and the method on which the infimum is
attained, an optimal method.

It is easily checked that

(3) Ep(Λ, D) ≥ sup
x(·)∈Wp

‖Fx(·)‖
Lp(Rd)

≤δ

‖Λx(·)‖L2(Rd).

Indeed, let x(·) ∈ Wp, ‖Fx(·)‖Lp(Rd) ≤ δ, and let m : Lp(Rd) → L2(Rd) be an

arbitrary recovery method. Since x(·) ∈Wp and −x(·) ∈Wp, we have

2‖Λx(·)‖L2(Rd) ≤ ‖Λx(·)−m(0)(·)‖L2(Rd)+‖−Λx(·)−m(0)(·)‖L2(Rd) ≤ 2ep(Λ, D,m).

It follows that, for any method m,

ep(Λ, D,m) ≥ sup
x(·)∈Wp

‖Fx(·)‖
Lp(Rd)

≤δ

‖Λx(·)‖L2(Rd).

Now the required inequality follows by taking the lower bound on the left over all
methods.
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3. Optimal recovery methods for Λ
η/2
θ

Consider the polar transformation in Rd

t1 = ρ cosω1,
t2 = ρ sinω1 cosω2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
td−1 = ρ sinω1 sinω2 . . . sinωd−2 cosωd−1,
td = ρ sinω1 sinω2 . . . sinωd−2 sinωd−1.

Set ω = (ω1, . . . , ωd−1). For any function f(·) we put

f̃(ω) = |f(cosω1, . . . , sinω1 sinω2 . . . sinωd−2 sinωd−1)|.

Note that if |f(·)| is a homogenous function of degree κ, then f̃(ω) = ρ−κ|f(t)|.
Let |ψ(·)| be homogenous function of degree η and |ϕ(·)| be homogenous functions

of degrees ν, ψ(t) 6= 0 and ϕj(t) 6= 0 for almost all t ∈ Rd. Set

γ =
ν − η

ν + d(1/2− 1/p)
, q∗ =

1

γ(1/2− 1/p)
,

Cp(ν, η) = γ−
γ
p (1− γ)−

1−γ
2

(
B (q∗γ/p+ 1, q∗(1− γ)/2)

2|ν − η|

)1/q∗

,

where B(·, ·) is the Euler beta-function.
It follows from [25, Theorem 6] (see also [20, Theorem 3]) the following result

Theorem 1. Let 2 < p ≤ ∞, γ ∈ (0, 1). Assume that

(4) I =

∫
Πd−1

ψ̃q
∗
(ω)

ϕ̃q∗(1−γ)(ω)
J(ω) dω <∞, Πd−1 = [0, π]d−2 × [0, 2π].

Then

Ep(Λ, D) =
1

(2π)dγ/2
Cp(ν, η)I1/q∗δγ .

The method

m̂(y)(t) = F−1

((
1− β |ϕ(t)|2

|ψ(t)|2

)
+

ψ(t)y(t)

)
,

where

β =
1− γ
(2π)dγ

C2
p(ν, η)

(
δI1/2−1/p

)2γ

,

is optimal.
Moreover, the sharp inequality

‖Λx(·)‖L2(Rd) ≤
Cp(ν, η)I1/q∗

(2π)dγ/2
‖Fx(·)‖γ

Lp(Rd)
‖Dx(·)‖1−γ

L2(Rd)

holds.

Put

ψθ(ξ) = (|ξ1|θ + . . .+ |ξd|θ)2/θ, θ > 0.

We denote by Λ
η/2
θ the operator Λ which is defined by (1) for ψ(·) = ψ

η/2
θ (·). In

particular, Λ2 = −∆, where ∆ is the Laplace operator.
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Consider problem (2) for Λ = Λ
η/2
θ and D = Λ

ν/2
µ . Then for I from (4) we have

(5) I =

∫
Πd−1

(∑d
k=1 t̃

θ
k(ω)

)ηq∗/θ
(∑d

k=1 t̃
µ
k (ω)

)νq∗(1−γ)/µ
J(ω) dω,

where
t̃1(ω) = cosω1,

t̃2(ω) = sinω1 cosω2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t̃d−1(ω) = sinω1 sinω2 . . . sinωd−2 cosωd−1,

t̃d(ω) = sinω1 sinω2 . . . sinωd−2 sinωd−1.

Note that
d∑
k=1

t̃k
2
(ω) = 1.

If µ ≤ 2, then

(6)

d∑
k=1

t̃k
µ
(ω) ≥

d∑
k=1

t̃k
2
(ω) = 1.

For µ > 2 by Hölder’s inequality

1 =

d∑
k=1

t̃k
2
(ω) ≤

( d∑
k=1

t̃k
µ
(ω)

) 2
µ

d1− 2
µ .

Thus,

(7)

d∑
k=1

t̃k
µ
(ω) ≥ d1−µ2 .

It follows by (6) and (7) that I <∞.

Corollary 1. Let 2 < p ≤ ∞, ν > η ≥ 0, and θ, µ > 0. Then

Ep(Λ
η/2
θ ,Λν/2µ ) =

1

(2π)dγ/2
Cp(ν, η)I1/q∗δγ ,

where I is defined by (5). The method

m̂(y)(t) = F−1

((
1− β

ψνµ(t)

ψηθ (t)

)
+

ψ
η/2
θ (t)y(t)

)
,

where

β =
1− γ
(2π)dγ

C2
p(ν, η)

(
δI1/2−1/p

)2γ

,

is optimal.
Moreover, the sharp inequality

‖Λη/2θ x(·)‖L2(Rd) ≤
Cp(ν, η)I1/q∗

(2π)dγ/2
‖Fx(·)‖γ

Lp(Rd)
‖Λν/2µ x(·)‖1−γ

L2(Rd)

holds.

Now we consider the case when p = 2.
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Theorem 2. Let ν > η > 0 and 0 < θ ≤ µ. Then

(8) E2(Λ
η/2
θ ,Λν/2µ ) = dη(1/θ−1/µ)

(
δ

(2π)d/2

)1−η/ν

,

and all methods

(9) m̂(y)(t) = F−1
(
a(t)ψ

η/2
θ (t)y(t)

)
,

where a(·) are measurable functions satisfying the condition

(10) ψηθ (ξ)

(
|1− a(ξ)|2

λ2ψνµ(ξ)
+
|a(ξ)|2

(2π)dλ1

)
≤ 1,

in which

λ1 =
d2η(1/θ−1/µ)

(2π)d

(
1− η

ν

)( (2π)d

δ2

)η/ν
, λ2 = d2η(1/θ−1/µ) η

ν

(
(2π)d

δ2

)η/ν−1

,

are optimal.
The sharp inequality

(11) ‖Λη/2θ x(·)‖L2(Rd) ≤
dη(1/θ−1/µ)

(2π)d(1−η/ν)/2
‖Fx(·)‖1−η/ν

L2(Rd)
‖Λν/2µ x(·)‖η/ν

L2(Rd)

holds.

Proof. It follows from (3) that

(12) E2(Λ
η/2
θ ,Λν/2µ ) ≥ sup

x(·)∈W2

‖Fx(·)‖
L2(Rd)≤δ

‖Λη/2θ x(·)‖L2(Rd).

Consider the extremal problem

‖Λη/2θ x(·)‖2L2(Rd) → max, ‖Fx(·)‖2L2(Rd) ≤ δ
2, ‖Λν/2µ x(·)‖2L2(Rd) ≤ 1.

Given 0 < ε < d−1/µ(2π)d/νδ−2/ν , we set

ξ̂ε =
1

d1/µ

(
(2π)d

δ2

) 1
2ν

(1, . . . , 1)− (ε, . . . , ε), Bε = {ξ ∈ Rd : |ξ − ξ̂ε| < ε }.

Consider a function xε(·) such that

Fxε(ξ) =


δ√

mesBε
, ξ ∈ Bε,

0, ξ /∈ Bε.

Then ‖Fxε(·)‖2L2(Rd) = δ2 and

‖Λν/2µ x(·)‖2L2(Rd) =
δ2

(2π)d mesBε

∫
Bε

(|ξ1|µ + . . .+ |ξd|µ)2ν/µ dξ ≤ 1.

By virtue of (12) we have

E2
2(Λ

η/2
θ ,Λν/2µ ) ≥ ‖Λη/2θ xε(·)‖2L2(Rd)

=
δ2

(2π)d mesBε

∫
Bε

ψηθ (ξ) dξ =
δ2

(2π)d
ψηθ (ξ̃ε), ξ̃ε ∈ Bε.
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Letting ε→ 0 we obtain the estimate

(13) E2
2(Λ

η/2
θ ,Λν/2µ ) ≥ d2η(1/θ−1/µ)

(
δ2

(2π)d

)1−η/ν

.

We will find optimal methods among methods (9). Passing to the Fourier trans-
form we have

‖Λη/2θ x(·)− m̂(y)(·)‖2L2(Rd) =
1

(2π)d

∫
Rd
ψηθ (ξ) |Fx(ξ)− a(ξ)y(ξ)|2 dξ.

We set z(·) = Fx(·)− y(·) and note that∫
Rd
|z(ξ)|2 dξ ≤ δ2,

1

(2π)d

∫
Rd
ψνµ(ξ)|Fx(ξ)|2 dξ ≤ 1.

Then

‖Λη/2θ x(·)− m̂(y)(·)‖2L2(Rd) =
1

(2π)d

∫
Rd
ψηθ (ξ) |(1− a(ξ))Fx(ξ) + a(ξ)z(ξ)|2 dξ.

We write the integrand as

ψηθ (ξ)

∣∣∣∣∣ (1− a(ξ))
√
λ2ψ

ν/2
µ (ξ)Fx(ξ)

√
λ2ψ

ν/2
µ (ξ)

+
a(ξ)

(2π)d/2
√
λ1

(2π)d/2
√
λ1z(ξ)

∣∣∣∣∣
2

.

Applying the Cauchy-Bunyakovskii-Schwarz inequality we obtain the estimate

‖Λη/2θ x(·)− m̂(y)(·)‖2L2(Rd)

≤ vraisup
ξ∈Rd

S(ξ)
1

(2π)d

∫
Rd

(
λ2ψ

ν
µ(ξ)|Fx(ξ)|2 + (2π)dλ1|z(ξ)|2

)
dξ,

where

S(ξ) = ψηθ (ξ)

(
|1− a(ξ)|2

λ2ψνµ(ξ)
+
|a(ξ)|2

(2π)dλ1

)
.

If we assume that S(ξ) ≤ 1 for almost all ξ, then taking into account (13), we get

(14) e2
2(Λ

η/2
θ ,Λν/2µ , m̂)

≤ 1

(2π)d

∫
Rd

(
λ2ψ

ν
µ(ξ)|Fx(ξ)|2 + (2π)dλ1|z(ξ)|2

)
dξ ≤ λ2 + λ1δ

2

= d2η(1/θ−1/µ)

(
δ2

(2π)d

)1−η/ν

≤ E2
2(Λ

η/2
θ ,Λν/2µ ).

This proves (8) and shows that the methods under consideration are optimal.
It remains to verify that the set of functions a(·) satisfying (10) is nonempty.

Put

a(ξ) =
(2π)dλ1

(2π)dλ1 + λ2ψνµ(ξ)
.

Then

S(ξ) =
ψηθ (ξ)

(2π)dλ1 + λ2ψνµ(ξ)
.

Since θ ≤ µ by Hölder’s inequality

d∑
j=1

|ξj |θ ≤
( d∑
j=1

|ξj |µ
)θ/µ

d1−θ/µ.
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Putting ρ = (|ξ1|θ + . . .+ |ξd|θ)1/θ, we obtain

d∑
j=1

|ξj |µ ≥ ρµd1−µ/θ.

Thus,

S(ξ) ≤ ρ2η

(2π)dλ1 + λ2ρ2νd2ν(1/µ−1/θ)
.

It is easily checked that the function f(ρ) = (2π)dλ1 + λ2ρ
2νd2ν(1/µ−1/θ) − ρ2η

reaches a minimum on [0,+∞) at

ρ0 = d1/θ−1/µ

(
(2π)d

δ2

)1/(2ν)

.

Moreover, f(ρ0) = 0. Consequently, f(ρ) ≥ 0 for all ρ ≥ 0. Hence S(ξ) ≤ 1 for all
ξ.

Let x(·) ∈ X2 for ϕ(·) = ψ
ν/2
µ (·). Put A = ‖Λν/2µ x(·)‖L2(Rd) + ε, ε > 0. Consider

x̂(·) = x(·)/A. Put δ = ‖Fx̂(·)‖L2(Rd). It follows from (14) that
(15)

sup
x(·)∈W2

‖Fx(·)‖
L2(Rd)≤δ

‖Λη/2θ x(·)‖L2(Rd) = E2(Λ
η/2
θ ,Λν/2µ ) = dη(1/θ−1/µ)

(
δ

(2π)d/2

)1−η/ν

.

Thus,

‖Λη/2θ x̂(·)‖L2(Rd) ≤ dη(1/θ−1/µ)

(
δ

(2π)d/2

)1−η/ν

.

Consequently,

‖Λη/2θ x(·)‖L2(Rd) ≤
dη(1/θ−1/µ)

(2π)d(1−η/ν)/2
‖Fx(·)‖1−η/ν

L2(Rd)

(
‖Λν/2µ x(·)‖L2(Rd) + ε

)η/ν
.

Letting ε→ 0 we obtain (11).
If there exists a

C <
dη(1/θ−1/µ)

(2π)d(1−η/ν)/2

for which

‖Λη/2θ x(·)‖L2(Rd) ≤ C‖Fx(·)‖1−η/ν
L2(Rd)

‖Λν/2µ x(·)‖η/ν
L2(Rd)

,

then

sup
x(·)∈W2

‖Fx(·)‖
L2(Rd)≤δ

‖Λη/2θ x(·)‖L2(Rd) ≤ Cδ1−η/ν <
dη(1/θ−1/µ)

(2π)d(1−η/ν)/2
δ1−η/ν .

This contradicts with (15). �

Let α = (α1, . . . , αd) ∈ Rd+. We define the operator Dα (the derivative of order
α) by

Dαx(·) = F−1((iξ)αFx(ξ))(·),
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where (iξ)α = (iξ1)α1 . . . (iξd)
αd . For µ = 2ν we have

‖Λν/22ν x(·)‖2L2(Rd) =
1

(2π)d

∫
Rd

(
|ξ1|2ν + . . .+ |ξd|2ν

)
|Fx(ξ)|2 dξ

=

d∑
j=1

‖Dνejx(·)‖2L2(Rd),

where ej , j = 1 . . . , d, is a standard basis in Rd.
From Theorem 2 we obtain the following result.

Corollary 2. Let ν > η > 0 and 0 < θ ≤ 2ν. Then

E2(Λ
η/2
θ ,Λ

ν/2
2ν ) = dη(1/θ−1/(2ν))

(
δ

(2π)d/2

)1−η/ν

,

and all methods

m̂(y)(t) = F−1
(
a(t)ψ

η/2
θ (t)y(t)

)
,

where a(·) are measurable functions satisfying the condition

ψηθ (ξ)

(
|1− a(ξ)|2

λ2ψν2ν(ξ)
+
|a(ξ)|2

(2π)dλ1

)
≤ 1,

in which

λ1 =
d2η(1/θ−1/(2ν))

(2π)d

(
1− η

ν

)( (2π)d

δ2

)η/ν
,

λ2 = d2η(1/θ−1/(2ν)) η

ν

(
(2π)d

δ2

)η/ν−1

,

are optimal.
The sharp inequality

(16)

‖Λη/2θ x(·)‖L2(Rd) ≤
dη(1/θ−1/(2ν))

(2π)d(1−η/ν)/2
‖Fx(·)‖1−η/ν

L2(Rd)

( d∑
j=1

‖Dνejx(·)‖2L2(Rd)

)η/(2ν)

holds.

For integer ν inequality (16) can be rewritten in the form

‖Λη/2θ x(·)‖L2(Rd) ≤
dη(1/θ−1/(2ν))

(2π)d(1−η/ν)/2
‖Fx(·)‖1−η/ν

L2(Rd)

( d∑
j=1

∥∥∥∥∂νx∂tνj
(·)
∥∥∥∥2

L2(Rd)

)η/(2ν)

.

4. Optimal recovery methods for Dα

Now we consider problem (2) for Λ = Dα and D = Λ
ν/2
µ . Then for I from (4)

we have

(17) I =

∫
Πd−1

(
t̃α1
1 (ω) . . . t̃αdd (ω)

)q1(∑d
k=1 t̃

µ
k (ω)

)νq1(1−γ1)/µ
J(ω) dω,

where

γ1 =
ν − |α|

ν + d(1/2− 1/p)
, q1 =

1

γ1(1/2− 1/p)
, |α| = α1 + . . .+ αd.
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It follows by (6) and (7) that I <∞.

Corollary 3. Let 2 < p ≤ ∞, ν > |α| ≥ 0, and µ > 0. Then

Ep(D
α,Λν/2µ ) =

1

(2π)dγ1/2
Cp(ν, |α|)I1/q1δγ1 ,

where I is defined by (17). The method

m̂(y)(t) = F−1

((
1− β

ψνµ(t)

t2α1
1 . . . t2αdd

)
+

(it)αy(t)

)
,

where

β =
1− γ1

(2π)dγ1
C2
p(ν, |α|)

(
δI1/2−1/p

)2γ1
,

is optimal.
Moreover, the sharp inequality

‖Dαx(·)‖L2(Rd) ≤
Cp(ν, |α|)I1/q1

(2π)dγ1/2
‖Fx(·)‖γ1

Lp(Rd)
‖Λν/2µ x(·)‖1−γ1

L2(Rd)

holds.

Consider the case when p = 2.

Theorem 3. Let 2ν ≥ µ > 0 and 0 < |α| < ν. Then

(18) E2(Dα,Λν/2µ ) =

(
δ

(2π)d/2

)1−|α|/ν

|α|−|α|/µ
d∏
j=1
αj 6=0

α
αj/µ
j ,

and all methods

(19) m̂(y)(t) = F−1 (a(t)(it)αy(t)) ,

where a(·) are measurable functions satisfying the condition

(20) ψηθ (ξ)

(
|1− a(ξ)|2

λ2ψνµ(ξ)
+
|a(ξ)|2

(2π)dλ1

)
≤ 1,

in which

λ1 =
|α|−2|α|/µ

(2π)d

(
1− |α|

ν

)(
(2π)d

δ2

)|α|/ν d∏
j=1
αj 6=0

α
2αj/µ
j ,

λ2 =
|α|−2|α|/µ+1

ν

(
(2π)d

δ2

)|α|/ν−1 d∏
j=1
αj 6=0

α
2αj/µ
j ,

are optimal.
The sharp inequality

(21) ‖Dαx(·)‖L2(Rd) ≤
|α|−|α|/µ

(2π)d(1−|α|/ν)/2

d∏
j=1
αj 6=0

α
αj/µ
j ‖Fx(·)‖1−|α|/ν

L2(Rd)
‖Λν/2µ x(·)‖|α|/ν

L2(Rd)

holds.
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Proof. It follows from (3) that

(22) E2(Dα,Λν/2µ ) ≥ sup
x(·)∈W2

‖Fx(·)‖
L2(Rd)≤δ

‖Dαx(·)‖L2(Rd).

Consider the extremal problem

‖Dαx(·)‖2L2(Rd) → max, ‖Fx(·)‖2L2(Rd) ≤ δ
2, ‖Λν/2µ x(·)‖2L2(Rd) ≤ 1.

Given

0 < ε < min

{
|α|−1/µ

(
(2π)d

δ2

)1/(2ν)

α
1/µ
j : αj > 0, j = 1, . . . , d

}
,

we set

ξ̂ε = |α|−1/µ

(
(2π)d

δ2

)1/(2ν)

(α
1/µ
1 , . . . , α

1/µ
d )− (ε1, . . . , εd), εj =

{
ε, αj > 0,

0, αj = 0,
,

Bε = {ξ ∈ Rd : |ξ − ξ̂ε| < ε }.

Consider a function xε(·) such that

Fxε(ξ) =


δ√

mesBε

(
1 + dεν

(
δ2

(2π)d

)µ/(2ν)
)−1/2

, ξ ∈ Bε,

0, ξ /∈ Bε.

Then

‖Fxε(·)‖2L2(Rd) = δ2

(
1 + dεν

(
δ2

(2π)d

)µ/(2ν)
)−1

≤ δ2

and

‖Λν/2µ x(·)‖2L2(Rd)

=
δ2

(2π)d mesBε

(
1 + dεν

(
δ2

(2π)d

)µ/(2ν)
)−1 ∫

Bε

(|ξ1|µ + . . .+ |ξd|µ)2ν/µ dξ

≤ δ2

(2π)d

(
1 + dεν

(
δ2

(2π)d

)µ/(2ν)
)−1

( (2π)d

δ2

)µ/(2ν)

|α|−1
d∑
j=1

αj + dεµ

2ν/µ

= 1.

By virtue of (22) we have

E2
2(Dα,Λν/2µ ) ≥ ‖Dαxε(·)‖2L2(Rd)

=
δ2

(2π)d mesBε

(
1 + dεν

(
δ2

(2π)d

)µ/(2ν)
)−1 ∫

Bε

|ξ1|2α1 . . . |ξd|2αd dξ

=
δ2

(2π)d

(
1 + dεν

(
δ2

(2π)d

)µ/(2ν)
)−1

|ξ̃1|2α1 . . . |ξ̃d|2αd , (ξ̃1, . . . , ξ̃d) ∈ Bε.
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Letting ε→ 0 we obtain the estimate

(23) E2
2(Dα,Λν/2µ ) ≥

(
δ2

(2π)d

)1−|α|/ν

|α|−2|α|/µ
d∏
j=1
αj 6=0

α
2αj/µ
j .

We will find optimal methods among methods (19). Passing to the Fourier
transform we have

‖Dαx(·)− m̂(y)(·)‖2L2(Rd) =
1

(2π)d

∫
Rd
|ξ1|2α1 . . . |ξd|2αd |Fx(ξ)− a(ξ)y(ξ)|2 dξ.

We set z(·) = Fx(·)− y(·) and note that∫
Rd
|z(ξ)|2 dξ ≤ δ2,

1

(2π)d

∫
Rd
ψνµ(ξ)|Fx(ξ)|2 dξ ≤ 1.

Then

‖Dαx(·)− m̂(y)(·)‖2L2(Rd)

=
1

(2π)d

∫
Rd
|ξ1|2α1 . . . |ξd|2αd |(1− a(ξ))Fx(ξ) + a(ξ)z(ξ)|2 dξ.

We write the integrand as

|ξ1|2α1 . . . |ξd|2αd
∣∣∣∣∣ (1− a(ξ))

√
λ2ψ

ν/2
µ (ξ)Fx(ξ)

√
λ2ψ

ν/2
µ (ξ)

+
a(ξ)

(2π)d/2
√
λ1

(2π)d/2
√
λ1z(ξ)

∣∣∣∣∣
2

.

Applying the Cauchy-Bunyakovskii-Schwarz inequality we obtain the estimate

‖Dαx(·)− m̂(y)(·)‖2L2(Rd)

≤ vraisup
ξ∈Rd

S(ξ)
1

(2π)d

∫
Rd

(
λ2ψ

ν
µ(ξ)|Fx(ξ)|2 + (2π)dλ1|z(ξ)|2

)
dξ,

where

S(ξ) = |ξ1|2α1 . . . |ξd|2αd
(
|1− a(ξ)|2

λ2ψνµ(ξ)
+
|a(ξ)|2

(2π)dλ1

)
.

If we assume that S(ξ) ≤ 1 for almost all ξ, then taking into account (23), we get

(24) e2
2(Dα,Λν/2µ , m̂)

≤ 1

(2π)d

∫
Rd

(
λ2ψ

ν
µ(ξ)|Fx(ξ)|2 + (2π)dλ1|z(ξ)|2

)
dξ ≤ λ2 + λ1δ

2

=

(
δ2

(2π)d

)1−|α|/ν

|α|−2|α|/µ
d∏
j=1
αj 6=0

α
2αj/µ
j ≤ E2

2(Dα,Λν/2µ ).

This proves (18) and shows that the methods under consideration are optimal.
It remains to verify that the set of functions a(·) satisfying (20) is nonempty.

Put

a(ξ) =
(2π)dλ1

(2π)dλ1 + λ2ψνµ(ξ)
.

Then

S(ξ) =
|ξ1|2α1 . . . |ξd|2αd

(2π)dλ1 + λ2ψνµ(ξ)
.
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Consider the function

H(t) = −1 + (2π)dλ1e
−2(α,t) + λ2

( d∑
j=1

eµtj−
µ
ν (α,t)

)2ν/µ

,

where (α, t) = α1t1 + . . . αdtd. It is easy to prove that H(·) is a convex function.

Moreover, H(t̂) = 0 and the derivative of H(·) at the point t̂ is also zero, where

t̂ =

(
1

µ
ln
α1

|α|
+

1

2ν
ln

(2π)d

δ2
, . . . ,

1

µ
ln
αd
|α|

+
1

2ν
ln

(2π)d

δ2

)
.

Consequently, H(t) ≥ 0 for all t ∈ Rd. It means that

e−2(α,t) ≤ (2π)dλ1 + λ2

( d∑
j=1

eµtj
)2ν/µ

.

Put |ξj | = etj , j = 1, . . . , d. Then we obtain

|ξ1|2α1 . . . |ξd|2αd ≤ (2π)dλ1 + λ2ψ
ν
µ(ξ).

Thus, S(ξ) ≤ 1.
The proof of (21) is similar to the proof of (11). �

For µ = 2ν we obtain

Corollary 4. Let 0 < |α| < ν. Then

E2(Dα,Λ
ν/2
2ν ) =

(
δ

(2π)d/2

)1−|α|/ν

|α|−|α|/(2ν)
d∏
j=1
αj 6=0

α
αj/(2ν)
j ,

and all methods
m̂(y)(t) = F−1 (a(t)(it)αy(t)) ,

where a(·) are measurable functions satisfying the condition

ψηθ (ξ)

(
|1− a(ξ)|2

λ2ψν2ν(ξ)
+
|a(ξ)|2

(2π)dλ1

)
≤ 1,

in which

λ1 =
1

(2π)d

(
1− |α|

ν

)(
(2π)d

|α|δ2

)|α|/ν d∏
j=1
αj 6=0

α
αj/ν
j ,

λ2 =
|α|
ν

(
(2π)d

|α|δ2

)|α|/ν−1 d∏
j=1
αj 6=0

α
αj/ν
j ,

are optimal.
The sharp inequality

(25) ‖Dαx(·)‖L2(Rd)

≤ |α|−|α|/(2ν)

(2π)d(1−|α|/ν)/2

d∏
j=1
αj 6=0

α
αj/(2ν)
j ‖Fx(·)‖1−|α|/ν

L2(Rd)

( d∑
j=1

‖Dνejx(·)‖2L2(Rd)

)|α|/(2ν)

holds.
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For integer ν inequality (25) can be rewritten in the form

‖Dαx(·)‖L2(Rd)

≤ |α|−|α|/(2ν)

(2π)d(1−|α|/ν)/2

d∏
j=1
αj 6=0

α
αj/(2ν)
j ‖Fx(·)‖1−|α|/ν

L2(Rd)

( d∑
j=1

∥∥∥∥∂νx∂tνj
(·)
∥∥∥∥2

L2(Rd)

)|α|/(2ν)

.
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