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Lecture 1

1. Introduction

What does it mean to solve a problem in an optimal way? Assume
that we have a problem p to be solved. Usually we have some infor-
mation abut this problem. This information as a rule is incomplete
and/or inaccurate. We denote it by I(p). Suppose we have a method
(algorithm) m to solve this problem. The method m uses the infor-
mation I(p). To compare the quality of different methods with each
method m we have to associate a number indicating the error of the
solution of the problem. We denote this number by e(p, I,m).

Usually we want to have a method that can be applied to several
problems of the same type. Assume that we have a set of problems P.
Then for the set P the error of the given method m may be defined as
follows

e(P, I,m) = sup
p∈P

e(p, I,m).

If we want to find a good method for problems P we have to find a
method for which the value e(P, I,m) as small as possible. Denote by
M the set of admissible methods. Then we want to find a method m̂
such that

e(P, I, m̂) = inf
m∈M

e(P, I,m) =: E(P, I,M).

We call the method m̂ an optimal method and the value E(P, I,M) is
called an optimal error.

It may appears that E(P, I,M) is not sufficiently small. Then we
may try to find another type of information about problems from P
that can provide a better error of solutions. In other words, we can
consider the following problem

inf
I∈I

E(P, I,M),

where I is some set of information.
Let us consider some examples.

Example 1 (optimal interpolation). Let W be some class of functions
defined on a domain D. Denote by pf the problem of finding f(t),
t ∈ D, for a function f ∈W . Put

I(pf) = I(f) = (f(t1), . . . , f(tn)), tj ∈ D, j = 1, . . . , n.

Let M be the set of all mappings m : Rn → R. We put

e(pf , I,m) = |f(t) −m(I(f))|.
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Here P = {pf : f ∈W}. Thus,

e(P, I,m) = sup
f∈W

|f(t) −m(I(f))| =: e(t,W, I,m).

To find an optimal method we have to consider the following problem

E(t,W, I,M) = inf
m : Rn→R

e(t,W, I,m).

This problem is called the problem of optimal recovery of a func-
tion f ∈ W at a fixed point t from the information about the values
f(t1), . . . , f(tn).

Example 2 (optimal integration). Let pf be the problem of finding
the integral

Lf =

∫ b

a

f(t) dt

for a function f ∈ W . With the same I(f), P, and M we obtain the
problem of optimal integration on the class W from the information
about values of f at a fixed system of nodes

E(L,W, I,M) = inf
m : Rn→R

sup
f∈W

∣∣∣∣
∫ b

a

f(t) dt−m(I(f))

∣∣∣∣ .

Note that if instead of M we consider the set M0 containing only
linear functions m, that is,

m(I(f)) =
n∑

j=1

ajf(tj), aj ∈ R, j = 1, . . . , n,

then we obtain the well-known problem of finding optimal quadrature
formula for the class W and a fixed system of nodes.

One may ask how to choose such points a ≤ t1 < . . . < tn ≤ b for
which the optimal error will be minimal. In this case we obtain the
following problem

E(L,W, I,M) = inf
I∈I

E(L,W, I,M),

where
I = { I : a ≤ t1 < . . . < tn ≤ b }.

Example 3 (optimal numerical differentiation). In notation of Exam-
ple 1 this is the following problem

E ′(t,W, I,M) = inf
m : Rn→R

sup
f∈W

|f ′(t) −m(I(f))|.

Let us consider complete solutions of these problems for some simple
classes.
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2. Optimal interpolation for W 1
∞

Denote by W 1
∞ the class of real functions f defined on the interval

[−1, 1], absolutely continuous, and satisfying the condition

|f ′(t)| ≤ 1 almost everywhere on [−1, 1].

Following Example 1 we put

e(t,W 1
∞, It̄, m) = sup

f∈W 1
∞

|f(t) −m(It̄(f))|,

E(t,W 1
∞, It̄) = inf

m : Rn→R

e(t,W 1
∞, It̄, m),

where

It̄(f) = (f(t1), . . . , f(tn)), t̄ = (t1, . . . , tn), −1 ≤ t1 < . . . < tn ≤ 1.

Denote by α(t) the nearest point to t from the set of nodes {t1, . . . , tn}
(in the case when t is in the middle between tj and tj+1 we set for def-
initeness α(t) = tj). Thus,

α(t) =





t1, −1 ≤ t ≤ t1 + t2
2

,

tj,
tj−1 + tj

2
< t ≤ tj + tj+1

2
, j = 2, . . . , n− 1,

tn,
tn−1 + tn

2
< t ≤ 1.

Put

f̂(t) = |t− α(t)|

(see Fig. 1).
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It is obvious that f̂ ∈ W 1
∞ and −f̂ ∈ W 1

∞. Moreover, It̄(f̂) =

It̄(−f̂) = 0. For any method m we have

2f̂(t) = |f̂(t) −m(0) − (−f̂ (t) −m(0))|
≤ |f̂(t) −m(0)| + | − f̂(t) −m(0)| ≤ 2e(t,W 1

∞, It̄, m).

Consequently, for all m

e(t,W 1
∞, It̄, m) ≥ f̂(t).

Hence

(1) E(t,W 1
∞, It̄) ≥ f̂(t).

We obtain the lower bound. Now let us obtain the upper bound.
Define the method m̂ by the equality

m̂(It̄(f)) = f(α(t)).

Then

f(t) − f(α(t)) =

∫ t

α(t)

f ′(τ) dτ.

Since |f ′(τ)| ≤ 1 we have

|f(t) − f(α(t))| ≤ |t− α(t)| = f̂(t).

Thus, for all f ∈W 1
∞

|f(t) − m̂(It̄(f))| ≤ f̂(t).

We have

E(t,W 1
∞, It̄) ≤ e(t,W 1

∞, It̄, m̂) ≤ f̂(t).

Taking into account the lower bound (1), we obtain that

E(t,W 1
∞, It̄) = f̂(t)

and m̂ ia an optimal method. Consequently, if we have function values
f(t1), . . . , f(tn), then an optimal method of recovery of f(t) on the
class W 1

∞ is the following

f(t) ≈ f(α(t))

(see Fig. 2).
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3. Optimal integration for W 1
∞

For the same class W 1
∞ and the same information It̄ consider the

problem of optimal recovery of the integral

Lf =

∫ 1

−1

f(t) dt.

As in the previous example any functions m : Rn → R are admitted as
recovery methods. The error of the method is defined as follows

e(L,W 1
∞, It̄, m) = sup

f∈W 1
∞

∣∣∣∣
∫ 1

−1

f(t) dt−m(It̄(f))

∣∣∣∣ .

We are interested in the optimal recovery error

E(L,W 1
∞, It̄) = inf

m : Rn→R

e(L,W 1
∞, It̄, m)

and in an optimal method of recovery, that is, in the method for which
the lower bound is attained. Using the same notation for the function

f̂(t) = |t− α(t)| we obtain that for every method m

2

∫ 1

−1

f̂(t) dt ≤
∣∣∣∣
∫ 1

−1

f̂(t) dt−m(0)

∣∣∣∣+
∣∣∣∣
∫ 1

−1

(−f̂(t)) dt−m(0)

∣∣∣∣

≤ 2e(L,W 1
∞, It̄, m).

Thus, for every method m

(2) E(L,W 1
∞, It̄) ≥

∫ 1

−1

f̂(t) dt.

To obtain the upper bound consider the method

m̂0(It̄(f)) =

∫ 1

−1

f(α(t)) dt =

∫ 1

−1

m̂(It̄) dt.
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We can rewrite this method in the form

m̂0(It̄(f)) =

∫ t1+t2
2

−1

f(t1) dt+

∫ t2+t3
2

t1+t2
2

f(t2) dt+ . . .+

∫ 1

tn−1+tn
2

f(tn) dt

=

(
t1 + t2

2
+ 1

)
f(t1) +

t3 − t1
2

f(t2) + . . .+

(
1 − tn−1 + tn

2

)
f(tn).

We show that m̂0 is an optimal method. We have

e(L,W 1
∞, It̄, m̂0) = sup

f∈W 1
∞

∣∣∣∣
∫ 1

−1

f(t) dt−
∫ 1

−1

f(α(t)) dt

∣∣∣∣

≤ sup
f∈W 1

∞

∫ 1

−1

|f(t) − f(α(t))| dt ≤
∫ 1

−1

|t− α(t)| dt =

∫ 1

−1

f̂(t) dt.

Thus,

E(L,W 1
∞, It̄) ≤

∫ 1

−1

f̂(t) dt.

Taking into account the lower bound (2) we obtain that

E(L,W 1
∞, It̄) =

∫ 1

−1

f̂(t) dt

and consequently the method m̂0 is optimal.
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Lecture 2

Let us try to find a system of nodes −1 ≤ t01 < . . . < t0n ≤ 1 for
which the error of optimal recovery will be minimal. In other words,
we consider the extremal problem

min
−1≤t1<...<tn≤1

∫ 1

−1

f̂(t) dt.

We have to find t1 < . . . < tn to make the shaded area minimal (see
Fig. 3).
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Figure 3

Put

h0 = t1 + 1, 2hj = tj+1 − tj, j = 1, . . . , n− 1, hn = 1 − tn.

Note that

h0 + 2h1 + . . .+ 2hn−1 + hn = 2.

Then ∫ 1

−1

f̂(t) dt =
h2

0

2
+ h2

1 + . . .+ h2
n−1 +

h2
n

2
.

We use the Cauchy-Shwartz inequality

∣∣∣∣
r∑

j=1

ajbj

∣∣∣∣ ≤

√√√√
r∑

j=1

a2
j

√√√√
r∑

j=1

b2j .

For a1 = . . . = ar = 1 it gives

r∑

j=1

b2j ≥
1

r

( r∑

j=1

bj

)2

.
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Thus,

∫ 1

−1

f̂(t) dt =
1

2
(h2

0 + (h2
1 + h2

1) + . . .+ (h2
n−1 + h2

n−1) + h2
n)

≥ 1

2

(h0 + 2h1 + . . .+ 2hn−1 + hn)
2

2 + 2(n− 1)
=

1

n
.

If we take h0 = h1 = . . . = hn = 1/n, then
∫ 1

−1

f̂(t) dt =
1

n
.

Consequently, the nodes

t0j = −1 +
2j − 1

n
, j = 1, . . . , n,

are optimal.

4. Optimal recovery of the derivative from inaccurate
information

In the previous examples we use incomplete but exact information.
Indeed we usually have some error in any input data. Let us consider
the following problem with inaccurate information. We want to find
approximate value of f ′(0) knowing approximate values of f at the
points −h, h, 0 < h ≤ 1. We assume that

f ∈W 2
∞ = { f : f ′ ∈W 1

∞ }
and we know the values f−1, f1 such that

|f(−h) − f−1| ≤ δ,

|f(h) − f1| ≤ δ,

where δ > 0 is the error of the input data. Any mapping m : R2 → R is
admitted as a recovery method. The error of the method m is defined
as follows

e′(W 2
∞, I

h
δ , m) = sup

f∈W 2
∞

sup
f−1,f1∈R

|f(jh)−fj |≤δ, j=−1,1

|f ′(0) −m(f−1, f1)|.

We are interested in the error of optimal recovery

E ′(W 2
∞, I

h
δ ) = inf

m : R2→R

e′(W 2
∞, I

h
δ , m)

and in an optimal method of recovery, that is, a method for which the
lower bound is attained.
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Put

f̂(t) =





−t
2

2
+

(
h

2
+
δ

h

)
t, 0 ≤ t ≤ 1,

t2

2
+

(
h

2
+
δ

h

)
t, −1 ≤ t ≤ 0.

1. The lower bound. It is easily verified that f̂ ,−f̂ ∈ W 2
∞ and

f̂(−h) = −δ, f̂(h) = δ. For any method m we have

2f̂ ′(0) ≤ |f̂ ′(0) −m(0, 0)| + | − f̂ ′(0) −m(0, 0)| ≤ 2e′(W 2
∞, I

h
δ , m).

Consequently,

E ′(W 2
∞, I

h
δ ) ≥ f̂ ′(0) =

h

2
+
δ

h
.

2. The upper bound. Consider the method

m̂(f−1, f1) =
f1 − f−1

2h
.

Taking into account that fj = f(jh) + δj , j = −1, 1, we have

(3)

e′(W 2
∞, I

h
δ , m̂) = sup

f∈W 2
∞

sup
|δj |≤δ, j=−1,1

∣∣∣∣f
′(0) − f(h) + δ1 − f(−h) − δ−1

2h

∣∣∣∣

≤ sup
f∈W 2

∞

∣∣∣∣f
′(0) − f(h) − f(−h)

2h

∣∣∣∣+
δ

h
.

To estimate the last supremum we need the following

Lemma 1. If f ∈W 2
∞, then for all τ ∈ [−1, 1] there exists M ∈ [−1, 1]

such that

(4) f(τ) = f(0) + f ′(0)τ +M
τ 2

2
.

Proof. We have
∫ τ

0

f ′′(t)(τ − t) dt =

∫ τ

0

(τ − t) df ′(t) = −τf ′(0) + f(τ) − f(0).

Since f ∈W 2
∞ we obtain
∣∣∣∣
∫ τ

0

f ′′(t)(τ − t) dt

∣∣∣∣ ≤
∣∣∣∣
∫ τ

0

|τ − t| dt
∣∣∣∣ =

τ 2

2
.

�
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Using (4) for τ = h and τ = −h, we have

f(h) = f(0) + f ′(0)h+M1
h2

2
,

f(−h) = f(0) − f ′(0)h+M−1
h2

2
.

Hence

f ′(0) =
f(h) − f(−h)

2h
− (M1 −M−1)

h

4
.

Consequently, for f ∈W 2
∞∣∣∣∣f

′(0) − f(h) − f(−h)
2h

∣∣∣∣ ≤
h

2
.

Now it follows from (3) that

e′(W 2
∞, I

h
δ , m̂) ≤ h

2
+
δ

h
= f̂ ′(0).

Taking into account the lower bound, we obtain that

E ′(W 2
∞, I

h
δ ) =

h

2
+
δ

h
and method m̂ is optimal.
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Lecture 3

Consider the problem of optimization of input information for the
value

E ′(W 2
∞, I

h
δ ) =

h

2
+
δ

h
.

It is easy to see (see Fig.4) that this function (as a function of x) has
the unique minimum on the interval (0, 1] at the point

ĥ =






√
2δ, 0 < δ <

1

2
,

1, δ ≥ 1

2
.

-

E ′

h
p
p
p
p

q

6

ĥ

Figure 4

Thus,

min
0<h≤1

E ′(W 2
∞, I

h
δ ) =






√
2δ, 0 < δ <

1

2
,

1

2
+ δ, δ ≥ 1

2
.

5. Recovery of a function at a point from inaccurate
information

Denote by L2(R) the space of functions f defined on R for which

‖f‖L2(R) =

(∫

R

|f(t)|2 dt
)1/2

<∞.

Let W1
2 (R) be the space of locally absolutely continuous functions f ∈

L2(R) for which ‖f ′‖L2(R) <∞. We denote by W 1
2 the class of functions

f ∈ W1
2 (R) for which ‖f ′‖L2(R) ≤ 1. For the class W 1

2 we consider
the problem of optimal recovery of the value f(0) from the information
about the function f given with the error δ > 0 in the L2(R)-norm. We
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assume that for each function f ∈ W 1
2 we know a function y ∈ L2(R)

such that
‖f − y‖L2(R) ≤ δ.

Knowing y we have to obtain a best possible approximation to the
value f(0).

Similar to the previous examples we are interested in the optimal
recovery error

E0(W
1
2 , I

R

δ ) = inf
m : L2(R)→R

e0(W
1
2 , I

R

δ , m),

where
e0(W

1
2 , I

R

δ , m) = sup
f∈W 1

2

sup
y∈L2(R)

‖f−y‖L2(R)≤δ

|f(0) −m(y)|,

and in optimal method of recovery (that is, in a method for which the
infimum is attained).

1. The lower bound. Let m : L2(R) → R be an arbitrary method,
f ∈W 1

2 , and ‖f‖L2(R) ≤ δ. Then

2|f(0)| ≤ |f(0) −m(0)| + | − f(0) −m(0)| ≤ 2e0(W
1
2 , I

R

δ , m).

Thus,
e0(W

1
2 , I

R

δ , m) ≥ |f(0)|.
Taking the infimum over all methods m and then the supremum over
all functions f ∈W 1

2 such that ‖f‖L2(R) ≤ δ, we obtain

E0(W
1
2 , I

R

δ ) ≥ sup
f∈W 1

2
‖f‖L2(R)≤δ

|f(0)|.

It is easy to check that the function

f̂(t) =
√
δe−|t|/δ

belongs to the class W 1
2 and ‖f̂‖L2(R) = δ. Consequently,

(5) E0(W
1
2 , I

R

δ ) ≥ |f̂(0)| =
√
δ.

2. The upper bound. First we prove that for all f ∈W 1
2

|f(t)| ≤
√

|t|‖f ′‖L2(R) + |f(0)|.
Using the Cauchy-Shwartz inequality, we have

|f(t) − f(0)| =

∣∣∣∣
∫ t

0

f ′(t) dt

∣∣∣∣ ≤
√
|t|‖f ′‖L2(R).

Thus,

|f(t)| ≤ |f(t) − f(0)| + |f(0)| ≤
√

|t|‖f ′‖L2(R) + |f(0)|.
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Consequently,

lim
t→±∞

f(t)e−|t|/δ = 0.

To find optimal method of recovery we prove that for all f ∈ W 1
2 the

following identity

(6) f(0) =
1

2δ

∫

R

e−|t|/δf(t) dt− 1

2

∫

R

e−|t|/δf ′(t) sign t dt

holds. We have
∫ ∞

0

e−t/δf ′(t) dt =

∫ ∞

0

e−t/δ df(t) = e−t/δf(t)
∣∣∣
∞

0
+

1

δ

∫ ∞

0

f(t)e−t/δ dt

= −f(0) +
1

δ

∫ ∞

0

f(t)e−t/δ dt.

Thus,

f(0) =
1

δ

∫ ∞

0

f(t)e−t/δ dt−
∫ ∞

0

e−t/δf ′(t) dt.

In a similar way we obtain, that

f(0) =
1

δ

∫ 0

−∞

f(t)et/δ dt+

∫ 0

−∞

et/δf ′(t) dt.

Adding these two equalities we obtain that (6) holds.
Now let us estimate the error of the method

m̂(y) =
1

2δ

∫

R

e−|t|/δy(t) dt.

Assume that f ∈W 1
2 , y ∈ L2(R), and ‖f − y‖L2(R) ≤ δ. Then

|f(0) − m̂(y)| =

∣∣∣∣f(0) − 1

2δ

∫

R

e−|t|/δ(y(t) − f(t) + f(t)) dt

∣∣∣∣

≤
∣∣∣∣f(0) − 1

2δ

∫

R

e−|t|/δf(t) dt

∣∣∣∣+
1

2δ

∣∣∣∣
∫

R

e−|t|/δ(y(t) − f(t)) dt

∣∣∣∣ .

Using (6) and the Cauchy-Shwartz inequality, we have

|f(0) − m̂(y)| ≤ 1

2

∫

R

e−|t|/δ|f ′(t)| dt+
1

2

√∫

R

e−2|t|/δ dt

≤
√∫

R

e−2|t|/δ dt =
‖f̂‖L2(R)√

δ
=

√
δ.

Hence

E0(W
1
2 , I

R

δ ) ≤ e0(W
1
2 , I

R

δ , m̂) ≤
√
δ.



15

Taking into account the lower bound (5), we obtain

E0(W
1
2 , I

R

δ ) = sup
f∈W 1

2
‖f‖L2(R)≤δ

|f(0)| =
√
δ.

Moreover, the method m̂ is an optimal method of recovery.
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Lecture 4

Let x be an arbitrary function from W1
2 (R) such, that x 6= const.

Put
f =

x

‖x′‖L2(R)

,

then f ∈W 2
∞. Set

δ =
‖x‖L2(R)

‖x′‖L2(R)
,

then ‖f‖L2(R) = δ. Since

|f(0)| ≤ sup
f∈W 1

2
‖f‖L2(R)≤δ

|f(0)| =
√
δ,

we have

|x(0)|
‖x′‖L2(R)

≤
‖x‖1/2

L2(R)

‖x′‖1/2
L2(R)

.

Thus,

(7) |x(0)| ≤ ‖x‖1/2
L2(R)‖x′‖

1/2
L2(R).

This is one of the so-called inequalities of Landau–Kolmogorov type.
These inequalities play a significant role in optimal recovery problems.
On the other hand, inequality (7) may be considered as an uncertainty
principal. It stays that both the norm of the function and the norm of
the derivative could not be sufficiently small at the same time.

6. General setting

Let X be a linear space, Z be a normed linear space, and T : X → Z
be a linear operator. We consider the problem of optimal recovery of the
operator T on a set W ⊂ X from the information about many-valued
operator F : W → Y (for each x ∈ W , F (x) is a set from Y ). We
assume that for every x ∈W we know an element y ∈ F (x). Knowing
y we have to approximate the value Tx. Every mapping m : Y → Z is
admitted as a recovery method (or an algorithm) (see Fig. 5).

X ⊃W - Z
T

@
@R Y �

��F m

Figure 5
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For a given method m we define the error of the method as follows

e(T,W, F,m) = sup
x∈W

sup
y∈F (x)

‖Tx−m(y)‖Z .

The quantity

E(T,W, F ) = inf
m : Y→Z

e(T,W, F,m)

is called the error of optimal recovery.

Lemma 2 (the lower bound). Assume that the set

F−1(0) = { x ∈W : F (x) = 0 }
is not empty and centrally-symmetric (that is, for any x ∈ F−1(0),
−x ∈ F−1(0)). Then

E(T,W, F ) ≥ sup
x∈F−1(0)

‖Tx‖Z .

Proof. Let x ∈ F−1(0) andm be an arbitrary method of recovery. Then
since −x ∈ F−1(0) we have

2‖Tx‖Z = ‖Tx−m(0) − (−Tx−m(0))‖Z
≤ ‖Tx−m(0)‖Z + ‖ − Tx−m(0)‖Z ≤ 2e(T,W, F,m).

Taking the supremum over all x ∈ F−1(0) we obtain that for all
m : Y → Z

e(T,W, F,m) ≥ sup
x∈F−1(0)

‖Tx‖Z .

Consequently,

E(T,W, F ) = inf
m : Y→Z

e(T,W, F,m) ≥ sup
x∈F−1(0)

‖Tx‖Z .

�

Now we consider the problem of optimal recovery of linear operators
for linear spaces with semi-inner products. Recall that Y is a linear
space with a semi-inner product (·, ·)Y , if there exists a mapping which
associates with every pair x, y ∈ X a real (or, in general, complex)
number (x, y)Y such, that

1. (x, x)Y ≥ 0.

2. (x, y)Y = (y, x)Y .
3. (αx+ βy, z)Y = α(x, z)Y + β(y, z)Y , α, β ∈ C.

Let X be a linear space, Y1, . . . , Yn be linear spaces with semi-inner
products (·, ·)Yj , j = 1, . . . , n, and the corresponding semi-norms ‖ · ‖Yj
(‖x‖Yj =

√
(x, x)Yj ), Ij : X → Yj, j = 1, . . . , n, be linear operators,
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and Z be a normed linear space. We consider the problem of optimal
recovery of the operator T : X → Z on the set

Wk = { x ∈ X : ‖Ijx‖Yj ≤ δj , 1 ≤ j ≤ k, 0 ≤ k < n }
(for k = 0 we take W = X) from the information about values of
operators Ik+1, . . . , In given with errors. We assume that for any x ∈W
we know the vector y = (yk+1, . . . , yn) such that

‖Ijx− yj‖Yj ≤ δj , j = k + 1, . . . , n

Knowing the vector y we want to recover Tx.
Using the notation of the general setting, in this problem we have

F (x) = { y = (yk+1, . . . , yn) ∈ Yk+1 × . . .× Yn :

‖Ijx− yj‖Yj ≤ δj , j = k + 1, . . . , n }.
Any operatorm : Yk+1×. . .×Yn → Z is admitted as a recovery method.
According to the general setting the value

e(T,Wk, I, δ,m) = sup
x∈Wk

sup
y=(yk+1,...,yn)∈Yk+1×...×Yn
‖Ijx−yj‖Yj≤δj , j=k+1,...,n

‖Tx−m(y)‖Z

is called the error of recovery of the method m (here I = (I1, . . . , In),
δ = (δ1, . . . δn)). The quantity

(8) E(T,Wk, I, δ) = inf
m : Yk+1×...×Yn→Z

e(T,Wk, I, δ,m)

is called the error of optimal recovery. A method delivering the lower
bound is called optimal.

The formulated problem of optimal recovery is closely connected with
the following extremal problem (we shall call it the duality extremal
problem)

(9) ‖Tx‖2
Z → max, ‖Ijx‖2

Yj
≤ δ2

j , j = 1, . . . , n, x ∈ X.
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Lecture 5

Now we formulate the main result. It what follows we will apply it
to many problems of optimal recovery.

Theorem 1. Assume that there exist λ̂j ≥ 0, j = 1, . . . , n, such that

the value of the extremal problem

(10) ‖Tx‖2
Z → max,

n∑

j=1

λ̂j‖Ijx‖2
Yj

≤
n∑

j=1

λ̂jδ
2
j , x ∈ X

is the same as in (9). Moreover, assume that for all y = (y1, . . . , yn) ∈
Y1 × . . .× Yn there exists xy = x(y1, . . . , yn) which is a solution of the

extremal problem

(11)
n∑

j=1

λ̂j‖Ijx− yj‖2
Yj

→ min, x ∈ X.

Then for all k, 0 ≤ k < n,

E(T,Wk, I, δ) = sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

‖Tx‖Z

and the method

(12) m̂(yk+1, . . . , yn) = Tx(0, . . . , 0, yk+1, . . . , yn)

is optimal.

To prove this theorem we need a preliminary result concerning a best
approximation property in a linear space with a semi-inner product.
Let Y be a linear space with a semi-inner product (·, ·)Y and L be a
subspace of Y . Let y ∈ Y . Consider the problem of best approximation
of y by elements from L

(13) ‖x− y‖Y → min, x ∈ L.

Proposition 1. If x̂ is a solution of (13), then for all x ∈ L

(x̂− y, x)Y = 0.

Proof. Suppose that there exists x0 ∈ L such that

(x̂− y, x0)Y = α 6= 0.
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Put z = x̂− λx0, where λ = α/‖x0‖2
Y . Note that z ∈ L. We have

‖z − y‖2
Y = (x̂− λx0 − y, x̂− λx0 − y)Y

= ‖x̂− y‖2
Y − 2 Re(x̂− y, λx0)Y + |λ|2‖x0‖2

Y

= ‖x̂− y‖2
Y − 2 Re(λα) +

|α|2
‖x0‖2

Y

= ‖x̂− y‖2
Y − |α|2

‖x0‖2
Y

< ‖x̂− y‖2
Y .

This contradiction proves the assertion of the theorem. �

Proof of Theorem 1. The lower bound. Since

F−1(0) = { x ∈ W : ‖Ijx‖Yj ≤ δj, j = k + 1, . . . , n }.
from Lemma 2 we have
(14)
E(T,Wk, I, δ) ≥ sup

x∈W
‖Ijx‖Yj≤δj , j=k+1,...,n

‖Tx‖Z = sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

‖Tx‖Z .

The upper bound. Consider the linear space E = Y1 × . . .× Yn with
the semi-inner product

(y1, y2)E =
n∑

j=1

λ̂j(y
1
j , y

2
j )Yj ,

where y1 = (y1
1, . . . , y

1
n), y

2 = (y2
1, . . . , y

2
n). Now the extremal problem

(11) can be rewritten in the form

‖Ĩx− y‖2
E → max, x ∈ X,

where Ĩx = (I1x, . . . , Inx) and y = (y1, . . . , yn). It follows from Propo-
sition 1 that for all x ∈ X

(Ĩxy − y, Ĩx)E = 0.

Consequently,

‖Ĩx− y‖2
E = ‖Ĩx− Ĩxy‖2

E + ‖Ĩxy − y‖2
E.

Indeed, we have

‖Ĩx− y‖2
E = ‖Ĩx− Ĩxy + Ĩxy − y‖2

E

= ‖Ĩx− Ĩxy‖2
E − 2 Re(Ĩx− Ĩxy, Ĩxy − y)E + ‖Ĩxy − y‖2

E

= ‖Ĩx− Ĩxy‖2
E + ‖Ĩxy − y‖2

E.

Thus, for all x ∈ X

(15) ‖Ĩx− Ĩxy‖2
E ≤ ‖Ĩx− y‖2

E =

n∑

j=1

λ̂j‖Ijx− yj‖2
Yj
.
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Let x ∈ X and y = (0, . . . , 0, yk+1, . . . , yn) such that ‖Ijx− yj‖Yj ≤ δj,
j = k + 1, . . . , n. Put z = x− xy. Then it follows from (15) that

n∑

j=1

λ̂j‖Ijz‖2
Yj

= ‖Ĩz‖2
E ≤

n∑

j=1

λ̂jδ
2
j .

Now for the method (12) we have the following estimate

‖Tx− m̂(0, . . . , 0, y1, . . . , yn)‖2
Z = ‖Tz‖2

Z

≤ sup
z∈XPn

j=1
bλj‖Ijz‖2

Yj
≤

Pn
j=1

bλjδ2j

‖Tz‖2
Z

= sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

‖Tx‖2
Z .

Consequently,

E(T,Wk, I, δ) ≤ e(T,Wk, I, δ, m̂) ≤ sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

‖Tx‖Z .

Taking into account the lower bound (14), we obtain that

E(T,Wk, I, δ) = sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

‖Tx‖Z

and m̂ is an optimal method. �
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Lecture 6

Now we obtain a sufficient conditions for coinciding the values of
problems (9) and (10). Put

L(x, λ) = −‖Tx‖2
Z +

n∑

j=1

λj‖Ijx‖2
Yj

(here λ = (λ1, . . . , λn). L is the so-called the Lagrange function for
the extremal problem (9). We call x̂ ∈ X an extremal element if it is
admissible in (9) (that is, ‖Ijx̂‖2

Yj
≤ δ2

j ) and

‖T x̂‖2
Z = sup

x∈X
‖Ijx‖2

Yj
≤δ2j , j=1,...,n

‖Tx‖2
Z .

Theorem 2 (sufficient condition). Assume that there exist λ̂j ≥ 0,
j = 1, . . . , n, and x̂ ∈ X admissible in (9) such that

(a) min
x∈X

L(x, λ̂) = L(x̂, λ̂), λ̂ = (λ̂1, . . . , λ̂n),

(b)

n∑

j=1

λ̂j(‖Ijx̂‖2
Yj
− δ2

j ) = 0.

Then x̂ is an extremal element and

sup
x∈X

‖Ijx‖
2
Yj

≤δ2j , j=1,...,n

‖Tx‖2
Z = sup

x∈XPn
j=1

bλj‖Ijx‖2
Yj

≤
Pn
j=1

bλjδ2j

‖Tx‖2
Z =

n∑

j=1

λ̂jδ
2
j .

Proof. Set

S =
n∑

j=1

λ̂jδ
2
j .

Let x ∈ X be an admissible element in (9). Then

− ‖Tx‖2
Z ≥ −‖Tx‖2

Z +

n∑

j=1

λ̂j(‖Ijx‖2
Yj

− δ2
j ) = L(x, λ̂) − S

≥ L(x̂, λ̂) − S = −‖T x̂‖2
Z +

n∑

j=1

λ̂j(‖Ijx̂‖2
Yj
− δ2

j ) = −‖T x̂‖2
Z .

The same arguments show that x̂ is an extremal element in the problem
(10).
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Now we prove that L(x̂, λ̂) = 0. Suppose that L(x̂, λ̂) = a > 0.
Consider x0 = αx̂, α < 1. We have

L(x0, λ̂) = α2L(x̂, λ̂) < L(x̂, λ̂).

If a < 0, we put α > 1. Then again

L(x0, λ̂) = α2L(x̂, λ̂) < L(x̂, λ̂).

Consequently,

sup
x∈X

‖Ijx‖2
Yj

≤δ2j , j=1,...,n

‖Tx‖2
Z = ‖T x̂‖2

Z = −L(x̂, λ̂) + S = S.

�

7. Optimal recovery of derivatives

Assume that we have the Fourier series for some 2π-periodic function
x:

x(t) =
+∞∑

j=−∞

xje
ijt.

Suppose that we know only a finite number of Fourier coefficients which
are given with an error. That is, we know x̃j , |j| ≤ N , such that

(16) |xj − x̃j | ≤ δ, |j| ≤ N.

Using the information {x̃j}|j|≤N we want to recover the k-th derivative
of x.

One of the simplest methods of recovery is the following

x(k)(t) ≈
∑

|j|≤N

(ij)kx̃je
ijt.

But it is not very good because for large j the error of terms (ij)kx̃j
may be large. Since

|(ij)kxj − (ij)kx̃j | ≤ jkδ

it may be of order jkδ.
In practice this effect are known very well. Those who deal with such

problems simply cut the terms with high frequencies or smooth them
by some filter.

The problem which we would like to pose is: what is a best method
of recovery? Or, in other words, what is a best possible filter? Now we
give the exact setting of the problem.
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Denote by T the unit circle realized as the interval [−π, π] with
identified endpoints. We denote by L2(T) the set of square integrable
functions x on T with norm

‖x‖L2(T) =

(
1

2π

∫

T

|x(t)|2 dt
)1/2

.

The space Wr
2 (T) is the set of 2π-periodic functions x for which the

(r−1)-st derivative is absolutely continuous and ‖x(r)‖L2(T) <∞. The
class W r

2 (T) is the set of 2π-periodic functions from Wr
2(T) for which

‖xr)‖L2(T) ≤ 1.
We assume that for every function x ∈W r

2 (T) we know the numbers
x̃j , |j| < n, such that (16) is fulfilled. The problem is to find the value

EN
∞(Dk,W r

2 (T), δ)

= inf
m : C2N+1→L2(T)

sup
x∈W r

2 (T), x̃={x̃j}|j|≤N
|xj−x̃j |≤δ, |j|≤N

‖x(k) −m(x̃)‖L2(T)

and a corresponding optimal method of recovery (that is, the method
delivering the lower bound).

Using notation of the general setting, here X = Wr
2 (T), Z = L2(T),

Tx = Dkx = x(k), Y1 = L2(T), Y2 = . . . = Y2N+2 = C, I1x = x(r),
Ijx = x−N+j−2, j = 2, . . . , 2N + 2, δ1 = 1, δ2 = . . . = δ2N+2 = δ,

W = { x ∈ X : ‖I1x‖Y1 ≤ δ1 }.
Consider the dual problem

(17) ‖x(k)‖2
L2(T) → max, ‖x(r)‖2

L2(T) ≤ 1, |xj |2 ≤ δ2, |J | ≤ N,

x ∈ Wr
2 (T).

The Lagrange function for this problem has the form

L(x, λ̄) = −‖x(k)‖2
L2(T) + λ‖x(r)‖2

L2(T) +
∑

|j|≤N

λj|xj |2,

where λ̄ = (λ, λ−N , . . . , λN). Since for all 0 ≤ s ≤ r

x(s)(t) =

+∞∑

j=−∞

(ij)sxje
ijt,

we have

‖x(s)‖L2(T) =

+∞∑

j=−∞

j2s|xj|2.
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Thus,

L(x, λ̄) =
∑

|j|≤N

(−j2k + λj2r + λj)|xj |2 +
∑

|j|>N

(−j2k + λj2r)|xj |2.

It follows from Theorem 2 that it is sufficiently to find an admissible

element x̂ ∈ Wr
2 (T) and

¯̂
λ = (λ̂, λ̂−N , . . . , λ̂N) such that conditions (a)

and (b) of this theorem will be fulfilled and then to find a solution of
extremal problem (11).
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Set

(18) p0 = max{ p ∈ Z+ : δ2
∑

|j|<p

j2r < 1, 0 ≤ p ≤ N }.

Put

λ̂ =
1

(p0 + 1)2(r−k)
, λ̂j =

{
j2k − λ̂j2r, |j| ≤ p0,

0, p0 + 1 ≤ |j| ≤ N,

x̂j =





δ, |j| ≤ p0,

1√
2(p0 + 1)r

√
1 − δ2

∑

|s|≤p0

s2r, |j| = p0 + 1,

0, |j| > p0 + 1.

Let us prove that

x̂(t) =
∑

|s|≤p0+1

x̂je
ist

is admissible function in extremal problem (17). We have

‖x̂(r)‖2
L2(T) = δ2

∑

|s|≤p0

s2r + 1 − δ2
∑

|s|≤p0

s2r = 1.

It remains to prove that if p0 < N , then |x̂j| ≤ δ. Suppose that

1

2(p0 + 1)(2r)

(
1 − δ2

∑

|s|≤p0

s2r

)
> δ2.

It means that
δ2

∑

|s|<p0+1

s2r < 1.

This contradicts the definition of p0.
Since

L(x, λ̂) =
∑

|j|>p0+1

(−j2k + λ̂j2r)|xj |2 ≥ 0

and L(x̂, λ̂) = 0, condition (a) of Theorem 2 is fulfilled. We obtained

that ‖f̂ 2r)‖L2(T) = 1. Together with equalities |x̂j | = δ, |j| ≤ p0 + 1, it
gives that condition (b) of the same theorem is fulfilled, too.

Consider the extremal problem (11). It has the following form

λ̂‖x(r)‖2
L2(T) +

∑

|j|≤p0

λ̂j |xj − x̃j |2 → min, x ∈ Wr
2 (T).
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We rewrite it in the form∑

|j|≤p0

(λ̂j|xj − x̃j |2 + λ̂j2r|xj|2) + λ̂
∑

|j|>p0

j2r|xj |2 → min, x ∈ Wr
2 (T).

Obviously, the solution of this problem is

x0
j =





λ̂j

λ̂j + λ̂j2r
x̃j , |j| ≤ p0,

0, |j| > p0.

It follows from Thorem 1 that the method

m̂(x̃) = (x0)(k)(t) =
∑

|j|≤p0

(ij)kx0
je
ijt

is optimal. Thus, we proved the following

Theorem 3. Let k, r ∈ Z+, 0 ≤ k < r, N ∈ N, δ > 0, and p0 be

defined by (18). Then

EN
∞(Dk,W r

2 (T), δ) =

√
1

(p0 + 1)2(r−k)
+ δ2

∑

|j|≤p0

αjj2k,

where

αj = 1 −
(

j

p0 + 1

)2(r−k)

.

Moreover, the method

m̂(x̃) =
∑

|j|≤p0

(ij)kαj x̃je
itj

is optimal.

Note that αj are monotonically decreasing as j various from 0 to p0.
It means that the optimal method m̂ smooths approximate values of
Fourier coefficients x̃j for large j.
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Consider some arguments which explain how to find λ̂, λ̂j, |j| ≤ N ,
and x̂. First, note that

−j2k + λ̂j2r + λ̂j ≥ 0, |j| ≤ N, −j2k + λ̂j2r ≥ 0, |j| > N.

Indeed, assume that for some s such that |s| ≤ N

−s2k + λ̂s2r + λ̂s < 0.

Put

x̂j =

{
c, j = s,

0, j 6= s.

Then

L(x̂, λ̂) = (−s2k + λ̂s2r + λ̂s)|c|2 < 0.

In this case L(x̂, λ̂) → −∞ as c→ ∞. Consequently,

min
x∈Wr

2 (T)
L(x, λ̂) = −∞.

The case |s| > N may be considered in a similar way.

Since L(x̂, λ̂) = 0 we have

(−j2k + λ̂j2r + λ̂j)|x̂j| = 0, |j| ≤ N, (−j2k + λ̂j2r)|x̂j | = 0, |j| > N.

It follows from condition (b) that if λ̂j 6= 0, then |x̂j | = δ and conse-

quently, −j2k + λ̂j2r + λ̂j = 0. Suppose we take x̂j = δ, |j| ≤ p, then
since x̂ ∈W r

2 (T) we have

δ2
∑

|j|≤p

j2r ≤ 1.

Note also that λ̂ 6= 0 otherwise −j2k+ λ̂j2r < 0, |j| > p. Thus, we need
to choose x̂ such that ‖x̂(2r)‖L2(T) = 1. All these arguments lead to the

right choice of λ̂, λ̂j, |j| ≤ N , and x̂.
Let δ > 0 be a fixed number. If p0 < N , then the further increase

of the number of Fourier coefficients known with the same error δ does
not decrease the error of optimal recovery. Thus for the fixed δ the
system of 2N(δ) + 1 Fourier coefficients (or 2N(δ) coefficients for the
case k > 0, since in this case the zero coefficient is not used in the
optimal method m̂), where

N(δ) = max

{
N ∈ Z+ : δ2

∑

|j|≤N

j2r < 1

}
,

allows to recover x(k) with the best possible accuracy.
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Set δ0 = ∞,

δs =

(∑

|j|≤s

j2r

)−1/2

, s = 1, 2, . . . .

Then for δ ∈ [δs+1, δs), s = 0, 1, . . ., N(δ) = s.
Let r = 2 and k = 1. Then

EN
∞(D,W 2

2 (T), δ) =
1

(p0 + 1)

√
1 + δ2

∑

|j|≤p0

(j2(p0 + 1)2 − j4).

Using equalities

n∑

j=1

j2 =
n(n + 1)(2n+ 1)

6
,

n∑

j=1

j4 =
n(n + 1)(2n+ 1)(3n2 + 3n− 1)

30
,(19)

which may be easily proved by induction, we obtain

(20) EN
∞(D,W 2

2 (T), δ)

=
1

p0 + 1

√
1 + δ2

p0(p0 + 1)(p0 + 2)(2p0 + 1)(2p0 + 3)

15
.

If k = 0, then

(21) EN
∞(D0,W 2

2 (T), δ) =
1

(p0 + 1)2

√
1 + δ2

∑

|j|≤p0

((p0 + 1)4 − j4)

=
1

(p0 + 1)2

√
1 + δ2

(p0 + 1)(2p0 + 1)(12p3
0 + 42p2

0 + 46p0 + 15)

15
.

We give some values of function N(δ) and the corresponding optimal
recovery errors.



30

δ2 N(δ) (E
N(δ)
∞ (D,W r

2 (T), δ))2 (E
N(δ)
∞ (D0,W r

2 (T), δ))2

[
1

2
,+∞

)
0 1 1 + δ2

[
1

34
,
1

2

)
1

1 + 6δ2

4

1 + 46δ2

16
[

1

196
,

1

34

)
2

1 + 56δ2

9

1 + 361δ2

81
[

1

708
,

1

196

)
3

1 + 252δ2

16

1 + 1596δ2

256

It may be directly verified that for n ≥ 1

6

(
n+

1

3

)5

< n(n+ 1)(2n+ 1)(3n2 + 3n− 1) < 6

(
n+

1

2

)5

.

It follows from (19) that

2

5

(
N(δ) +

1

3

)5

<
∑

|j|≤N(δ)

j4 <
2

5

(
N(δ) +

1

2

)5

.

In view of the definition of N(δ) we have
( ∑

|j|≤N(δ)+1

j4

)−1/2

≤ δ <

( ∑

|j|≤N(δ)

j4

)−1/2

.

Thus,
2

5

(
N(δ) +

3

2

)5

< δ−2 <
2

5

(
N(δ) +

1

3

)5

.

Using these inequalities we obtain
(

5

2δ2

)1/5

− 3

2
< N(δ) <

(
5

2δ2

)1/5

− 1

3
.

Now from (20) and (21) we have

EN(δ)
∞ (D,W 2

2 (T), δ) =

√
7

6

(
2δ2

5

)1/5

+O(δ4/5),

EN(δ)
∞ (D0,W 2

2 (T), δ) =
√

5

(
2δ2

5

)1/5

+O(δ4/5).
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Now we consider the case when approximate values of Fourier coef-
ficients x̃j satisfy the condition

+∞∑

j=−∞

|xj − x̃j |2 ≤ δ2.

We define the error of optimal recovery as follows

E2(D
k,W r

2 (T), δ)

= inf
m : l2→L2(T)

sup
x∈W r

2 (T), x̃={x̃j}j∈Z∈l2P+∞
j=−∞ |xj−x̃j |

2≤δ2

‖x(k) −m(x̃)‖L2(T),

where l2 is the space of vectors {xj}j∈Z such that

+∞∑

j=−∞

|xj |2 <∞.

Now the duality problem has the form

(22) ‖x(k)‖2
L2(T) → max, ‖x(r)‖2

L2(T) ≤ 1,

+∞∑

j=−∞

|xj |2 ≤ δ2,

x ∈ Wr
2 (T).

Consider the Lagrange function for this extremal problem

L(x, λ1, λ2) = −‖x(k)‖2
L2(T) + λ1‖x(r)‖2

L2(T) + λ2

+∞∑

j=−∞

|xj|2

=

+∞∑

j=−∞

(−j2k + λ1j
2r + λ2)|xj |2

=
+∞∑

j=−∞

−j2k(−1 + λ1j
2(r−k) + λ2j

−2k)|xj|2.

Consider the function

F (x) = −1 + λ1x
2(r−k) + λ2x

−2k, x > 0.

It is easily verified that f(x) is a convex function. Thus, if f(s) =
f(s+ 1) = 0, s ≥ 1, then for all j ≥ 1, f(j) ≥ 0.
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For fixed s ≥ 1 we find λ̂1 and λ̂2 from the condition f(s) = f(s+1) =
0. We have

λ̂1s
2(r−k) + λ̂2s

−2k = 1,

λ̂1(s+ 1)2(r−k) + λ̂2(s+ 1)−2k = 1.

Hence,

λ̂1 =
(s+ 1)2k − s2k

(s+ 1)2r − s2r
,

λ̂2 =
(s+ 1)2rs2k − s2r(s+ 1)2k

(s+ 1)2r − s2r
.

It may be easily checked that λ̂1, λ̂2 ≥ 0. Thus, we have

L(x, λ̂1, λ̂2) ≥ 0.

Put

(23) x̂(t) = x̂se
ist + x̂s+1e

i(s+1)t.

Then

‖x̂(r)‖2
L2(T) = |x̂s|2s2r + |x̂s+1|2(s+ 1)2r.

To satisfy the conditions

(24) ‖x̂(r)‖2
L2(T) = 1,

+∞∑

j=−∞

|x̂j |2 = δ2

we should have

|x̂s|2s2r + |x̂s+1|2(s+ 1)2r = 1,

|x̂s|2 + |x̂s+1|2 = δ2.

It follows from these equations that

|x̂s|2 =
δ2(s+ 1)2r − 1

(s+ 1)2r − s2r
,

|x̂s+1|2 =
1 − δ2s2r

(s+ 1)2r − s2r
.

Thus, for
1

(s+ 1)r
≤ δ <

1

sr

x̂ is admissible function in (22) and L(x̂, λ̂1, λ̂2) = 0.
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If δ ≥ 1 we put wl1=1 and λ̂2 = 0. Then

L(x, 1, 0) =
+∞∑

j=−∞

j2k(−1 + j2(r−k))|xj |2 ≥ 0.

Let x̂ = eit. Then L(x̂, 1, 0) = 0. Moreover,

‖x̂(r)‖L2(T) = 1,
+∞∑

j=−∞

|x̂j|2 = 1 ≤ δ2.

Consequently, x̂ is admissible function.
Now it follows from Theorems 2 and 1 that in order to find an optimal

method of recovery we have to solve the following extremal problem

λ̂1‖x(r)‖2
L2(T) + λ̂2

+∞∑

j=−∞

|xj − x̃j |2 → min, x ∈ Wr
2(T).

Rewriting this problem in the form

+∞∑

j=−∞

(λ̂1j
2r|xj |2 + λ̂2|xj − x̃j |2) → min, x ∈ Wr

2(T),

we can easily find the solution of this problem

x0
j =

λ̂2

λ̂2 + j2rλ̂1

x̃j .

It follows from Theorem 1 that the method

m̂(x̃) =
+∞∑

j=−∞

(ij)k
λ̂2

λ̂2 + j2rλ̂1

x̃je
ijt

is optimal for the considered problem. Thus we prove the following
result.

Theorem 4. Let k, n ∈ N, 0 < k < n, and δ > 0. Then for

1

(s+ 1)r
≤ δ <

1

sr
, s = 1, 2, . . . ,

E2(D
k,W r

2 (T), δ) =

√

δ2s2k + (1 − δ2s2r)
(s+ 1)2k − s2k

(s+ 1)2r − s2r
.

Moreover, the method

m̂(x̃) =

+∞∑

j=−∞

(ij)k
(

1 + j2r (s+ 1)2k − s2k

s2k(s+ 1)2r − (s+ 1)2ks2r

)−1

x̃je
ijt
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is optimal. For δ ≥ 1, E2(D
k,W r

2 (T), δ) = 1 and the method m̂(x̃) = 0
is optimal.
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Consider again the following question: how to find λ̂1, λ̂2, and x̂ for
the Lagrange function of the dual problem. We give now a graphical
illustration which helps to answer this question.

Recall that the Lagrange function may be written in the following
form

L(x, λ1, λ2) =

+∞∑

j=−∞

(−j2k + λ1j
2r + λ2)|xj|2.

Consider the set of points on the plane R2

(25)

{
xj = j2r,

yj = j2k,
j = 0, 1, . . . .

If we plot the function

(26)

{
x = t2r,

y = t2k,
t ∈ [0,+∞),

then the points (25) belong to the plot of this function. The function
defined by (26) can be written in the form

y = xk/r, 0 <
k

r
< 1.

It is a convex function. Consequently, the piecewise linear function
passing through the points (25) is also convex.

Let s2r < δ−2 ≤ (s+ 1)2r. Assume that the line y = λ̂1x+ λ̂2 passes
through the points (s2r, s2k) and ((s+ 1)2r, (s+ 1)2k). Then in view of
convexity for all points (j2r, j2k), j = 0, 1, . . .,

j2k ≤ y(j2r) = λ̂1j
2r + λ̂2.

It means that −j2k + λ̂1j
2r + λ̂2 ≥ 0. Thus, for all x ∈ Wr

2 (T),

L(x, λ̂1, λ̂2) ≥ 0.
Taking x̂j = 0, j 6= s, s + 1, and choosing x̂s and x̂s+1 from the

condition (24), we obtain that x̂ defined by (23) is admissible function

and L(x̂, λ̂1, λ̂2) = 0. Hence,

min
x∈Wr

2 (T)
L(x, λ̂1, λ̂2) = L(x̂, λ̂1, λ̂2).

By the way,

λ̂1δ
−2 + λ̂2 =

1

δ2
(λ̂1 + λ̂2δ

2) =
1

δ2
(E2(D

k,W r
2 (T), δ))2.
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Thus,

(E2(D
k,W r

2 (T), δ))2 =
y(δ−2)

δ−2
.

The last value is the tangent of the angle between the line connected
the origin with the point (δ−2, y(δ−2)) and the axis Ox.

We see that in this problem in optimal recovery method (for the
case when δ < 1) we use all information about approximate values of
Fourier coefficients. It appears that we can construct another optimal
recovery method that will use only a finite number of inaccurate Fourier
coefficients.

Consider the case when we know approximate values of the Fourier
coefficients x̃j , |j| ≤ N , such that

∑

|j|≤N

|xj − x̃j |2 ≤ δ2.

In this case the duality problem has the form

‖x(k)‖2
L2(T) → max, ‖x(r)‖2

L2(T) ≤ 1,
∑

|j|≤N

|xj |2 ≤ δ2, x ∈ Wr
2(T).

The Lagrange function may be written in the following form

L(x, λ1, λ2) =
∑

|j|≤N

(−j2k + λ1j
2r + λ2)|xj|2 +

∑

|j|>N

(−j2k + λ1j
2r)|xj |2.

Assume that

s2r <
1

δ2
≤ (s+ 1)2r,

s < N , and

λ̂1 =
(s+ 1)2k − s2k

(s+ 1)2r − s2r
≥ 1

(N + 1)2(r−k)
.

Then for the same λ̂1 and λ̂2 as in the previous case and any x ∈ Wr
2(T)

we have
L(x, λ̂1, λ̂2) ≥ 0 = L(x̂, λ̂1, λ̂2),

where x̂ is also the same as above.
Set

(27) s0 = min

{
s ∈ N :

(s+ 1)2k − s2k

(s+ 1)2r − s2r
≤ 1

(N + 1)2(r−k)

}
.

Consider the line passing through the point (s2r
0 , s

2k
0 ) which is parallel

to the line connected the origin and the point ((N + 1)2r, (N + 1)2k).

It has the form y = λ̂1x+ λ̂2, where

λ̂1 =
1

(N + 1)2(r−k)
, λ̂2 = s2k

0 − s2r
0

(N + 1)2(r−k)
.
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Now assume that δ−2 ≥ s2r
0 . Put x̂j = 0, j 6= s0, N + 1, and x̂s0 , x̂N+1

define from the conditions

‖x̂(r)‖2
L2(T) = 1,

∑

|j|≤N

|x̂j |2 = δ2.

We put

x̂s0 = δ, |x̂N+1| =

√
1 − δ2s2r

0

(N + 1)r
.

The function
x̂(t) = x̂s0e

is0t + x̂N+1e
i(N+1)t

is an admissible and consequently is extremal in the duality problem
for the case when δ−2 ≥ s2r

0 .
Now we consider the extremal problem for finding an optimal method

of recovery

λ̂1

+∞∑

j=−∞

j2r|xj|2 + λ̂2

∑

|j|≤N

|xj − x̃j |2 → min, x ∈ Wr
2 (T).

It may be rewritten in the following form
∑

|j|≤N

(λ̂1j
2r|xj |2 + λ̂2|xj − x̃j |2) + λ̂1

∑

|j|>N

j2r|xj |2 → min, x ∈ Wr
2 (T).

We can easily find the solution of this problem

x0
j =






λ̂2

λ̂2 + j2rλ̂1

x̃j , |j| ≤ N,

0, |j| > N.

It follows from Theorem 1 that the method

m̂(x̃) =
∑

|j|≤N

(ij)k
λ̂2

λ̂2 + j2rλ̂1

x̃je
ijt

is optimal.
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Thus, for the problem

(28) EN
2 (Dk,W r

2 (T), δ)

= inf
m : C2N+1→L2(T)

sup
x∈W r

2 (T), x̃={x̃j}|j|≤NP
|j|≤N |xj−x̃j |2≤δ2

‖x(k) −m(x̃)‖L2(T)

we obtain the following result.

Theorem 5. Let k, n,N ∈ N, 0 < k < n, δ > 0, and s0 be defined by

(27). Then for

1

(s+ 1)r
≤ δ <

1

sr
, s = 1, 2, . . . , s0 − 1,(29)

EN
2 (Dk,W r

2 (T), δ) =

√
δ2s2k + (1 − δ2s2r)

(s+ 1)2k − s2k

(s+ 1)2r − s2r
.

Moreover, the method

m̂(x̃) =
∑

|j|<N

(ij)k
(

1 + j2r (s+ 1)2k − s2k

s2k(s+ 1)2r − (s+ 1)2ks2r

)−1

x̃je
ijt

is optimal. For δ ≥ 1, EN
2 (Dk,W r

2 (T), δ) = 1 and the method m̂(x̃) =
0 is optimal. For 0 < δ ≤ (s0 + 1)−r,

EN
2 (Dk,W r

2 (T), δ) =

√

δ2s2k
0 +

1 − δ2s2r
0

(N + 1)2(r−k)

and

m̂(x̃) =
∑

|j|<N

(ij)k
(

1 +
j2r

s2k
0 (N + 1)2(r−k) − s2r

0

)−1

x̃je
ijt

is an optimal method.

Now we wish to show that for δ satisfying condition (29) it is possible
to construct an optimal method of recovery which uses, in general, less
approximate values of Fourier coefficients. Set

(30) Ns = min

{
N ∈ N :

(s+ 1)2k − s2k

(s+ 1)2r − s2r
>

1

(N + 1)2(r−k)

}
.

In view of definition of s0, Ns ≤ N . It follows from Theorem 5 that

ENs
2 (Dk,W r

2 (T), δ) = EN
2 (Dk,W r

2 (T), δ).
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Denote by m̂1 the optimal method of recovery obtained from Theorem 5
for N = Ns. We show that it is also optimal for the problem (28). We
have

eN2 (Dk,W r
2 (T), δ, m̂1) = sup

x∈W r
2 (T), x̃={x̃j}|j|≤NP

|j|≤N |xj−x̃j |
2≤δ2

‖x(k) − m̂1(x̃)‖L2(T)

≤ sup
x∈W r

2 (T), x̃={x̃j}|j|≤NsP
|j|≤Ns

|xj−x̃j |
2≤δ2

‖x(k) − m̂1(x̃)‖L2(T) = eNs2 (Dk,W r
2 (T), δ, m̂1)

= ENs
2 (Dk,W r

2 (T), δ) = EN
2 (Dk,W r

2 (T), δ).

Hence m̂1 is optimal for the problem (28).
Now we can formulate a more precise version of Theorem 5.

Theorem 6. Let k, n,N ∈ N, 0 < k < n, δ > 0, s0 be defined by (27),
and Ns be defined by (30). Then for δ satisfying (29)

EN
2 (Dk,W r

2 (T), δ) =

√
δ2s2k + (1 − δ2s2r)

(s+ 1)2k − s2k

(s+ 1)2r − s2r
.

Moreover, the method

m̂1(x̃) =
∑

|j|<Ns

(ij)k
(

1 + j2r (s+ 1)2k − s2k

s2k(s+ 1)2r − (s+ 1)2ks2r

)−1

x̃je
ijt

is optimal. For δ ≥ 1, EN
2 (Dk,W r

2 (T), δ) = 1 and the method m̂(x̃) =
0 is optimal. For 0 < δ ≤ (s0 + 1)−r,

EN
2 (Dk,W r

2 (T), δ) =

√

δ2s2k
0 +

1 − δ2s2r
0

(N + 1)2(r−k)

and

m̂(x̃) =
∑

|j|<N

(ij)k
(

1 +
j2r

s2k
0 (N + 1)2(r−k) − s2r

0

)−1

x̃je
ijt

is an optimal method.

Let 0 < δ < 1 be fixed. Suppose that s ∈ N such that (29) is fulfilled.
If we want to recover x(k) with the minimal error of optimal recovery
and the minimal number of using inaccurate Furier coefficients, than
this minimal number equals 2Ns(δ).

Problems

Set

Nkr(δ) = Ns, δ ∈ [(s+ 1)−r ≤ δ < s−r).
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1. Find the asymptotic of Nkr as δ → 0.
2. Find the asymptotic of ENkr

2 (Dk,W r
2 (T), δ) = E2(D

k,W r
2 (T), δ)

as δ → 0.

8. Optimal recovery of derivatives (continuous case)

We consider the analogous problem of recovery of derivatives for
functions defined on R. Namely, we want to recover x(k) by information
about Fourier transform of x (which we denote by Fx) given with an
error.

First we recall some facts about the Fourier transform. Let x ∈
L2(R). Then the Fourier transform of the function x is defined as
follows

Fx(τ) =

∫

R

x(t)e−iτt dt.

It follows from the Plancherel theorem that Fx can be considered as a
function from L2(R), moreover,

‖x‖2
L2(R) =

1

2π
‖Fx‖2

L2(R).

The inverse Fourier transform is given by the formula

x(t) =
1

2π

∫

R

Fx(τ)eitτ dτ.

We will need also the following well-known formula

Fx(k)(τ) = (iτ)kFx(τ).

Denote by Wr
2(R) the space of functions from L2(R) such that x(r−1)

is locally absolute continuous on R and x(r) ∈ L2(R). Let W r
2 (R) be

the class of functions from Wr
2 (R) for which ‖x(r)‖L2(R) ≤ 1.
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We state the problem on optimal recovery of x(k), 0 < k < r on the
class W r

2 (R) in the L2(R)-metric from the information about approxi-
mate values of Fourier transform Fx. Assume that for any x ∈W r

2 (R)
we know a function y ∈ L2(R) such that

‖Fx− y‖L2(R) ≤ δ.

Knowing y we want to recover x(k).
We define the error of optimal recovery as follows

E2(D
k,W r

2 (R), δ) = inf
m : L2(R)→L2(R)

sup
x∈W r

2 (R), y∈L2(R)
‖Fx−y‖L2(R)≤δ

‖x(k) −m(y)‖L2(R).

Any method for which the infimum is attained we call an optimal
method of recovery.

Consider the duality problem

‖x(k)‖2
L2(T) → max, ‖x(r)‖2

L2(R) ≤ 1, ‖Fx‖2
L2(R) ≤ δ2, x ∈ Wr

2 (R).

Passing to Fourier transforms and using the Plancherel theorem, we
may rewrite this problem in the form

(31)∫

R

τ 2ku(τ) dτ → max,

∫

R

τ 2ru(τ) dτ ≤ 1, 2π

∫

R

u(τ) dτ ≤ δ2,

u ∈ L1(R), u(τ) ≥ 0 almost everywhere on R,

where u(τ) = (2π)−1|Fx(τ)|2. There is no existence of extremal func-
tion in this problem. Therefore, we consider the extension of this prob-
lem for measures

(32)

∫

R

τ 2k dµ(τ) → max,

∫

R

τ 2r dµ(τ) ≤ 1, 2π

∫

R

dµ(τ) ≤ δ2.

The Lagrange function for this problem has the form

L(µ, λ1, λ2) =

∫

R

(−τ 2k + λ1τ
2r + 2πλ2) dµ(τ).

Consider the function {
y = τ 2k,

x = τ 2r.

We have y = xk/r, 0 < k/r < 1. Using the same arguments as above we

want to find such λ̂1 and λ̂2 that for all points of the curve y = xk/r the
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inequality −y + λ̂1x+ 2πλ̂2 ≥ 0 will be fulfilled. Consider the tangent
of this curve at some point (τ 2r

0 , τ
2k
0 )

y − τ 2k
0 =

k

r
τ 2k−2r
0 (x− τ 2r

0 ).

Since the function y = xk/r is concave we have that for all points of
this curve

−y +
k

r
τ 2k−2r
0 x+ τ 2k

0

r − k

r
≥ 0.

Set

λ̂1 =
k

r
τ 2k−2r
0 , λ̂2 =

1

2π
τ 2k
0

r − k

r
.

Then for all τ

−τ 2k + λ̂1τ
2r + 2πλ̂2 ≥ 0.

Hence for all µ, L(µ, λ̂1, λ̂2) ≥ 0.
Now consider a measure concentrated at the point τ0

dµ̂(τ) = Aδ(τ − τ0).

Choose A and τ0 from the conditions
∫

R

τ 2r dµ̂(τ) = 1, 2π

∫

R

dµ̂(τ) = δ2.

We have

A =
δ

2π
, τ0 =

(
2π

δ2

) 1
2r

.

Moreover, L(µ̂, λ̂1, λ̂2) = 0.
It follows from Theorem 2 that the value of the problem (32) coin-

cides with the value of the problem
∫

R

τ 2k dµ(τ) → max,

∫

R

(λ̂1τ
2r + 2πλ̂2) dµ(τ) ≤ λ̂1 + λ̂2δ

2.

Since measures Aδ(τ − τ0) can be approximate by step functions, the
value of (31) coincides with the value of the problem
∫

R

τ 2ku(τ) dτ → max,

∫

R

(λ̂1τ
2r + 2πλ̂2)u(τ) dτ ≤ λ̂1 + λ̂2δ

2,

u ∈ L1(R), u(τ) ≥ 0 almost everywhere on R,

Now it follows from Theorem 1 that it remains to find the solution
of the extremal problem

λ̂1‖x(r)‖2
L2(R) + λ̂2‖Fx− y‖2

L2(T) → min, x ∈ Wr
2(R).
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Passing to Fourier transforms and using the Plancherel theorem we
obtain the following problem
∫

R

(
λ̂1

2π
τ 2r|Fx(τ)|2 + λ̂2|Fx(τ) − y(τ)|2

)
dτ → min, x ∈ Wr

2(R).

It can be easily verified that the solution of this problem is the function
x0 such that

Fx0(τ) =

(
1 +

τ 2rλ̂1

2πλ̂2

)−1

y =

(
1 +

δ2

2π

k

r − k
τ 2r

)−1

y.

Thus, we prove

Theorem 7. Let k, r ∈ N, 0 < k < n, and δ > 0. Then

E2(D
k,W r

2 (R), δ) =

(
δ√
2π

)1−k/r

and the method

m̂(y) =

∫

R

(iτ)k
(

1 +
δ2

2π

k

r − k
τ 2r

)−1

yeitτ dτ

is optimal.
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It follows from Theorems 1 and 7 that

sup
x∈W r

2 (R)
‖Fx‖L2(R)≤δ

‖x(k)‖L2(R) =

(
δ√
2π

)1−k/r

.

It means that for all x ∈W r
2 (R) such that ‖Fx‖L2(R) ≤ δ

(33) ‖x(k)‖L2(R) ≤
(

δ√
2π

)1−k/r

.

Let f ∈ Wr
2 (R) and f 6= 0. Put

x =
f

‖f (r)‖L2(R)

, δ = ‖Fx‖L2(R) =
‖Ff‖L2(R)

‖f (r)‖L2(R)

.

Substituting x to (33) we obtain

‖f (k)‖L2(R)

‖f (r)‖L2(R)

≤
(

1

2π

) r−k
2r
( ‖Ff‖L2(R)

‖f (r)‖L2(R)

) r−k
r

.

Thus we obtain the following inequality

(34) ‖f (k)‖L2(R) ≤
(

1

2π

) r−k
2r

‖Ff‖1−k/r
L2(R) ‖f (r)‖k/rL2(R).

This inequality is exact. It means that we cannot replace the number
(2π)−(r−k)/(2r) by any smaller number.

In view of the equality

‖Ff‖2
L2(R) = 2π‖f‖2

L2(R)

it follows from (34) that

(35) ‖f (k)‖L2(R) ≤ ‖f‖1−k/r
L2(R) ‖f (r)‖k/rL2(R).

The last inequality is known as the Hardy–Littlewood–Pólya inequality.
It is the one from a big set of the so-called Landau–Kolmogorov type
inequalities for derivatives.

9. Landau–Kolmogorov inequalities for derivatives and
optimal recovery

Exact inequalities for derivatives have been attracting the attention
of many mathematicians for many years. The first result in this field
was obtained by E. Landau in 1913 who proved that for all functions
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x ∈ L∞(R+) with the first derivative locally absolutely continuous on
R+ and x′′ ∈ L∞(R+) the following exact inequality

‖x′‖L∞(R+) ≤ 2‖x‖1/2
L∞(R+)‖x′′‖

1/2
L∞(R+)

holds. Then in 1914 Hadamard proved the exact inequality

‖x′‖L∞(R) ≤
√

2‖x‖1/2
L∞(R)‖x′′‖

1/2
L∞(R).

The first general result was obtained by Hardy, Littlewood, and
Pólya. In 1934 they proved inequality (35).

Probably the most remarkable result was obtained by Kolmogorov
in 1939 who proved that

‖x(k)‖L∞(R) ≤
Kr−k

K
1− k

r
r

‖x‖1−k/r
L∞(R)‖x(r)‖k/rL∞(R),

where

Km =
4

π

∞∑

s=0

(−1)s(m+1)

(2s+ 1)m+1

are the Favard constants.
Let Wr

s (T ) be the set of all functions x with the (r− 1)st derivative
locally absolutely continuous on T = R or R+ and x(r) ∈ Lp(T ). The
general problem of Landau–Kolmogorov type exact inequalities may
be formulated as follows: find a minimal constant K = K(k, r, p, q, s)
such that for all functions x ∈ Wr

s (T ) ∩ Lq(T ) the inequality

(36) ‖x(k)‖Lp(T ) ≤ K‖x‖αLq(T )‖x(r)‖βLs(T )

holds, where 0 ≤ k < r, 1 ≤ p, q, s ≤ ∞.
If there exists a constant K that for all x ∈ Wr

s (T )∩Lq(T ) inequality
(36) is fulfilled, then α + β = 1. Indeed, let x 6= 0 be a function from
Wr

s (T ) ∩ Lq(T ). Consider the function λx, λ > 0. Substituting this
function in (36), we obtain

λ‖x(k)‖Lp(T ) ≤ λα+βK‖x‖αLq(T )‖x(r)‖βLs(T ).

The only case to have such inequality for all λ > 0 is the case when
α+ β = 1.

Now consider the function x(λt). We have

‖x(λt)‖Lp(T ) =

(∫

R

|x(λt)|p dt
)1/p

=

(
1

λ

∫

R

|x(τ)|p dτ
)1/p

= λ−1/p‖x‖Lp(T ).
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Substituting the function x(λt) in (36), we obtain

λk−1/p‖x(k)‖Lp(T ) ≤ Kλ−(1−β)/q‖x‖1−β
Lq(T )λ

(r−1/s)β‖x(r)‖βLs(T ).

Thus we have

k − 1/p = −(1 − β)/q + (r − 1/s)β.

Hence

β =
k + 1/q − 1/p

r + 1/q − 1/s
.

We proved that if there exists a constant K that for all x ∈ Wr
s (T )∩

Lq(T ) inequality (36) is fulfilled, then this inequality should have the
following form

(37) ‖x(k)‖Lp(T ) ≤ K‖x‖
r−k+1/p−1/s
r+1/q−1/s

Lq(T ) ‖x(r)‖
k+1/q−1/p
r+1/q−1/s

Ls(T ) .
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Proposition 2. If K is the exact constant in (37), then for all δ > 0

sup
x∈Wr

s (T )∩Lq(T )
‖x‖Lq(T )≤δ

‖x(r)‖Ls(T )≤1

‖x(k)‖Lp(T ) = Kδ
r−k+1/p−1/s
r+1/q−1/s .

Proof. Since K is the exact constant in (37), for any ε > 0 there exists
a function xε ∈ Wr

s (T ) ∩ Lq(T ), x 6= 0, such that

‖x(k)
ε ‖Lp(T ) = (K − ε)‖xε‖

r−k+1/p−1/s
r+1/q−1/s

Lq(T ) ‖x(r)
ε ‖

k+1/q−1/p
r+1/q−1/s

Ls(T ) .

For the function fε(t) = Axε(λt), A, λ > 0, we have

‖f (r)
ε ‖Ls(T ) = Aλr−1/s‖x(r)

ε ‖Ls(T ), ‖fε‖Lq(T ) = Aλ−1/q‖xε‖Lq(T ).

Putting

λ =

(
‖xε‖Lq(T )

δ‖x(r)
ε ‖Ls(T )

) 1
r+1/q−1/s

, A =
1

λr−1/s‖x(r)
ε ‖Ls(T )

,

we obtain

‖f (r)
ε ‖Ls(T ) = 1, ‖fε‖Lq(T ) = δ.

Consequently,

sup
x∈Wr

s (T )∩Lq(T )
‖x‖Lq(T )≤δ

‖x(r)‖Ls(T )≤1

‖x(k)‖Lp(T ) ≥ ‖f (k)
ε ‖Ls(T ) = (K − ε)δ

r−k+1/p−1/s
r+1/q−1/s .

Since ε is an arbitrary positive number we have

sup
x∈Wr

s (T )∩Lq(T )
‖x‖Lq(T )≤δ

‖x(r)‖Ls(T )≤1

‖x(k)‖Lp(T ) ≥ Kδ
r−k+1/p−1/s
r+1/q−1/s .

The upper bound follows immediately from (37). �

Corollary 1.

K = sup
x∈Wr

s (T )∩Lq(T )
‖x‖Lq(T )≤1

‖x(r)‖Ls(T )≤1

‖x(k)‖Lp(T )

is the exact constant in (37).



48

Now we establish the connection of optimal recovery problems with
the exact constants in Landau-Kolmogorov inequalities for derivatives.
Consider the problem of optimal recovery of x(k), x ∈W r

s (T ) ∩ Lq(T ),
in Lp(T )-metric on the basis of inaccurate information about x, where
W r
s (T ) is the set of functions from Wr

s (T ) for which ‖x(r)‖Ls(T ) ≤ 1. We
assume that for all x ∈W r

s (T ) ∩ Lq(T ) we know a function y ∈ Lq(T )
such that ‖x − y‖Lq(T ) ≤ δ. Knowing y we want to recover x(k) in an
optimal way. In this case the error of optimal recovery is defined as
follows

E∗
q (D

k,W r
s (T ) ∩ Lq(T ), δ)

= inf
m : Lq(T )→Lp(T )

sup
x∈W r

s (T )∩Lq(T )

sup
y∈Lq(T )

‖x−y‖Lq(T )≤δ

‖x(k) −m(y)‖Lp(T ).

It follows from Lemma 2 that

E∗
q (D

k,W r
s (T ) ∩ Lq(T ), δ) ≥ sup

x∈Wr
s (T )∩Lq(T )

‖x‖Lq(T )≤δ

‖x(r)‖Ls(T )≤1

‖x(k)‖Lp(T ).

Thus we obtain the following result.

Theorem 8. If K is the exact constant in equality (37), then for all

δ > 0

E∗
q (D

k,W r
s (T ) ∩ Lq(T ), δ) ≥ Kδ

r−k+1/p−1/s
r+1/q−1/s .

10. Inequality for derivatives with Fourier transform

In (34) we obtain the exact inequality where we estimate the k-th
derivative by the r-th derivative and the Fourier transform of function.
Consider the following general problem. Let F r

sq denote the space of
functions x ∈ Wr

s (R) for which Fx ∈ Lq(R). The problem is to find
a minimal constant KF = KF (k, r, p, q, s) such that for all functions
x ∈ F r

sq the inequality

(38) ‖x(k)‖Lp(R) ≤ KF‖Fx‖αLq(R)‖x(r)‖βLs(R)

holds, where 0 ≤ k < r, 1 ≤ p, q, s ≤ ∞.
The same arguments as above show that α + β = 1. Now consider

the function xλ(t) = x(λt). We have

Fxλ(τ) =

∫

R

x(λt)e−iτt dτ =
1

λ

∫

R

x(u)e−iuτ/λ du =
1

λ
Fx
(τ
λ

)
.

Substituting the function x(λt) in (38), we obtain

λk−1/p‖x(k)‖Lp(R) ≤ KFλ
−(1−β)(q−1)/q‖Fx‖1−β

Lq(R)λ
(r−1/s)β‖x(r)‖βLs(R).
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Thus we have

k − 1/p = −(1 − β)(q − 1)/q + (r − 1/s)β.

Consequently,

β =
k + 1/q′ − 1/p

r + 1/q′ − 1/s
,

where q′ is defined as follows

1

q
+

1

q′
= 1.

We proved that if there exists a constant KF that for all x ∈ F r
sq

inequality (38) is fulfilled, then this inequality should have the following
form

(39) ‖x(k)‖Lp(R) ≤ KF‖Fx‖
r−k+1/p−1/s

r+1/q′−1/s

Lq(R) ‖x(r)‖
k+1/q′−1/p

r+1/q′−1/s

Ls(R) .
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Similarly to Proposition 2 we obtain

Proposition 3. If KF is the exact constant in (39), then for all δ > 0

sup
x∈Frsq

‖Fx‖Lq(R)≤δ

‖x(r)‖Ls(R)≤1

‖x(k)‖Lp(R) = KF δ
r−k+1/p−1/s

r+1/q′−1/s .

Corollary 2.

KF = sup
x∈Frsq

‖Fx‖Lq(R)≤1

‖x(r)‖Ls(R)≤1

‖x(k)‖Lp(R)

is the exact constant in (39).

Now we state the problem of optimal recovery of x(k), x ∈ F r
sq, in

Lp(T )-metric on the basis of inaccurate information about Fx, where
F r
sq = F r

sq∩W r
s (R). We assume that for all x ∈ F r

sq we know a function
y ∈ Lq(T ) such that ‖Fx− y‖Lq(T ) ≤ δ. Knowing y we want to recover

x(k) in an optimal way. In this case the error of optimal recovery is
defined as follows

Eq(D
k, F r

sq, δ) = inf
m : Lq(T )→Lp(R)

sup
x∈F rsq

sup
y∈Lq(T )

‖Fx−y‖Lq(R)≤δ

‖x(k) −m(y)‖Lp(R).

It follows from Lemma 2 that

Eq(D
k, F r

sq, δ) ≥ sup
x∈Frsq

‖Fx‖Lq(R)≤δ

‖x(r)‖Ls(R)≤1

‖x(k)‖Lp(R).

The analog of Theorem 8 is

Theorem 9. If KF is the exact constant in equality (39), then for all

δ > 0

Eq(D
k, F r

sq, δ) ≥ KF δ
r−k+1/p−1/s

r+1/q′−1/s .

It follows from (34) (since in this inequality the constant is exact)
that

KF (k, r, 2, 2, 2) =

(
1

2π

) r−k
2r

.

Now we find the exact constant KF (k, r, 2, q, 2) for 2 < q <∞.
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Theorem 10. Let n ∈ N, 0 ≤ k < r, and 2 < q <∞. Then

KF (k, r, 2, q, 2)

=

√
r + 1/2 − 1/q

k + 1/2 − 1/q

(√
k + 1/2 − 1/qB1/2−1/q

√
2π(r − k)1−1/q

) r−k
r+1/2−1/q

,

where

(40) B = B

(
k + 1/2 − 1/q

(r − k)(1 − 2/q)
, 2

1 − 1/q

1 − 2/q

)

and

B(a, b) =

∫ 1

0

ta−1(1 − x)b−1 dx

is the Euler beta function.

Consider the extremal problem

‖x(k)‖2
L2(R) → max, ‖Fx‖2

Lq(R) ≤ 1, ‖x(r)‖2
L2(R) ≤ 1.

This problem can be rewritten in terms of the Fourier transforms as

(41)

∫

R

t2ku(t) dt→ max,

∫

R

uq/2(t) dt ≤
(

1

2π

)q/2
,

∫

R

t2ru(t) dt ≤ 1, u(t) ≥ 0,

where u = (2π)−1|Fx|2. For this problem the Lagrange function has
the form

L(u, λ1, λ2) =

∫

R

(−t2ku(t) + λ1u
p/2(t) + λ2t

2ru(t)) dt.

It follows from Theorem 2 that if we find a function û admissible in
(41) and Lagrange multipliers λ̂1, λ̂2 ≥ 0 such that

(a) min
u(t)≥0

L(u, λ̂1, λ̂2) = L(û, λ̂1, λ̂2),

(b) λ̂1

(∫

R

u(t)q/2 dt− 1

2π

)
= 0,

(c) λ̂2

(∫

R

t2ru(t) dt− 1

)
= 0,

then û will be a solution of problem (41). Set λ̂2 = σ−2(r−k), where
parameter σ > 0 will be defined later. Since for any fixed t and σ ≥ t
the function

f(x) = −t2kx+ λ̂1x
q/2 +

t2r

σ2(r−k)
x



52

attains its minimum at the point

x̂ =

(
2

qλ̂1

(
t2k − t2r

σ2(r−k)

)) 1
q/2−1

,

we have

−t2ku(t) + λ̂1u
q/2(t) +

t2r

σ2(r−k)
u(t) ≥ −t2kû(t) + λ1û

q/2(t) +
t2r

σ2(r−k)
û(t)

for all u(t) ≥ 0 and any λ̂1 > 0, where

û(t) =






(
2

qλ̂1

(
t2k − t2r

σ2(r−k)

)) 1
q/2−1

, |t| ≤ σ,

0, |t| > σ.

Thus, condition (a) is satisfied. We take σ and λ̂1 such that conditions
(b) and (c) are satisfied:

µq/2
∫ σ

−σ

(
t2k − t2r

σ2(r−k)

) q/2
q/2−1

dt =

(
1

2π

)q/2
,

µ

∫ σ

−σ

t2r
(
t2k − t2r

σ2(r−k)

) 1
q/2−1

dt = 1,

where

µ =

(
2

qλ̂1

) 1
q/2−1

.

Making the change of variable t = σy, we obtain

2µq/2σ
qk

q/2−1
+1

∫ 1

0

y
qk

q/2−1
(
1 − y2(r−k)

) q/2
q/2−1 dy =

(
1

2π

)q/2
,

2µσ
2k

q/2−1
+2r+1

∫ 1

0

y
2k+r(q−2)
q/2−1

(
1 − y2(r−k)

) 1
q/2−1 dy = 1.

Now putting

y = τ
1

2(r−k) ,

we obtain

µq/2σ
qk

q/2−1
+1 1

r − k

∫ 1

0

τ
k+1/2−1/q

(r−k)(1−2/q)
−1

(1 − τ)
q/2
q/2−1 dτ =

(
1

2π

)q/2
,

µσ
2k

q/2−1
+2r+1 1

r − k

∫ 1

0

τ
k+1/2−1/q

(r−k)(1−2/q) (1 − τ)
1

q/2−1 dτ = 1.
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Expressing the resulting integrals via the value of beta function B
defined in (40) and using the property of beta function

B(a+ 1, b) =
a

b
B(a, b+ 1),

we obtain

µq/2σ
qk

q/2−1
+1 B

r − k
=

(
1

2π

)q/2
,

µσ
2k

q/2−1
+2r+1 (k + 1/2 − 1/q)B

(r − k)2
= 1.

Hence

(42) µ =
(r − k)2

(k + 1/2 − 1/q)B
σ− 2k

q/2−1
−2r−1

and

(43) σ =

( √
2π(r − k)1−1/q

(k + 1/2 − 1/q)1/2B1/2−1/q

) 1
r+1/2−1/q

.

Taking into account (42), we have
∫

R

t2kû(t) dt =
r + 1/2 − 1/q

k + 1/2 − 1/p
σ−2(r−k).

Substituting there the value σ given by (43), we obtain that for all
2 < q <∞

sup
x∈Fr2q

‖Fx‖Lq(R)≤1

‖x(r)‖L2(R)≤1

‖x(k)‖L2(R)

=

√
r + 1/2 − 1/q

k + 1/2 − 1/q

(√
k + 1/2 − 1/qB1/2−1/q

√
2π(n− k)1−1/q

) r−k
r+1/2−1/q

.

Now the theorem follows from Corollary 2.
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11. Optimal recovery of derivatives from Fourier
transforms given on a finite interval

Let us return to the problem of optimal recovery of the k-th deriv-
ative of functions from W r

2 (R) on the basis of inaccurate information
about their Fourier transforms. But now we will consider the case when
the Fourier transform Fx is given on a finite interval ∆σ = (−σ, σ),
σ > 0.

We assume that for any function x ∈ W r
2 (R) we know y ∈ L2(∆σ)

such that

‖Fx− y‖L2(∆σ) ≤ δ.

The error of optimal recovery is defined as follows

Eσ
2 (Dk,W r

2 (R), δ) = inf
m : L2(∆σ)→L2(R)

sup
x∈W r

2 (R), y∈L2(∆σ)
‖Fx−y‖L2(∆σ)≤δ

‖x(k)−m(y)‖L2(R).

In this case the dual problem has the form

(44) ‖x(k)‖2
L2(T) → max, ‖x(r)‖2

L2(R) ≤ 1, ‖Fx‖2
L2(∆σ) ≤ δ2,

x ∈ Wr
2(R).

Passing to Fourier transforms and using the Plancherel theorem, we
may rewrite this problem in the form

(45)∫

R

τ 2ku(τ) dτ → max,

∫

R

τ 2ru(τ) dτ ≤ 1, 2π

∫

∆σ

u(τ) dτ ≤ δ2,

u ∈ L1(R), u(τ) ≥ 0 almost everywhere on R,

where u(τ) = (2π)−1|Fx(τ)|2. Since there is no existence we, again
consider the extension of this problem for measures

(46)

∫

R

τ 2k dµ(τ) → max,

∫

R

τ 2r dµ(τ) ≤ 1, 2π

∫

∆σ

dµ(τ) ≤ δ2.

The Lagrange function for this problem has the form

L(µ, λ1, λ2) =

∫

R

(−τ 2k + λ1τ
2r + 2πλ2χσ(t)) dµ(τ),

where

χσ(t) =

{
1, t ∈ (−σ, σ),

0, t /∈ (−σ, σ).
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Consider the function {
y = τ 2k,

x = τ 2r.

We have y = xk/r, 0 < k/r < 1. Consider the tangent of this curve at
some point (τ 2r

0 , τ
2k
0 )

y − τ 2k
0 =

k

r
τ 2k−2r
0 (x− τ 2r

0 ).

Since the function y = xk/r is concave we have that for all points of
this curve

−y +
k

r
τ 2k−2r
0 x+ τ 2k

0

r − k

r
≥ 0.

Set

λ̂1 =
k

r
τ 2k−2r
0 , λ̂2 =

1

2π
τ 2k
0

r − k

r
.

Then for all τ

−τ 2k + λ̂1τ
2r + 2πλ̂2 ≥ 0.

Now let us find σ̂ such that for all τ ≥ σ̂

−τ 2k + λ̂1τ
2r ≥ 0.

It can be easily obtained that

σ̂ = λ̂
− 1

2(r−k)

1 =
( r
k

) 1
2(r−k)

τ0.

Assume that σ ≥ σ̂. Then for all µ

L(µ, λ̂1, λ̂2) =

∫

∆σ

(−τ 2k + λ̂1τ
2r + 2πλ̂2) dµ(τ)

+

∫

R\∆σ

(−τ 2k + λ̂1τ
2r) dµ(τ) ≥ 0.

Now consider a measure concentrated at the point τ0

dµ̂(τ) = Aδ(τ − τ0).

Choose A and τ0 from the conditions
∫

R

τ 2r dµ̂(τ) = 1, 2π

∫

∆σ

dµ̂(τ) = δ2.

We have

A =
δ2

2π
, τ0 =

(
2π

δ2

) 1
2r

.

Moreover, L(µ̂, λ̂1, λ̂2) = 0.
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Thus, it follows from Theorem 2 that for the case

σ ≥ σ̂ =
( r
k

) 1
2(r−k)

τ0 =
( r
k

) 1
2(r−k)

(
2π

δ2

) 1
2r

we solved the extremal problem (46).
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Now we consider the case when σ < σ̂. The line y = σ2(k−r)x passes
through the points (0, 0) and (σ2k, σ2r). Let us find a point τ̂ such that
the tangent of the curve y = xk/r at the point τ̂ 2r is parallel to the line
y = σ2(k−r)x. We have

k

r
(τ̂ 2r)k/r−1 = σ2(k−r).

Hence

τ̂ =

(
k

r

) 1
2(r−k)

σ.

The equation of the tangent has the form

(47) y = λ̂1x+ 2πλ̂2,

where

λ̂1 = σ2(k−r), λ̂2 =
1

2π

r − k

r

(
k

r

) k
r−k

σ2k.

Since the function y = xk/r is concave and the line (47) is a tangent,
we have that for all points of this curve

−y + λ̂1x+ 2πλ̂2 ≥ 0.

Moreover, for all t ≥ σ, −t2k + λ̂1t
2r ≥ 0. Thus for all µ

L(µ, λ̂1, λ̂2) =

∫

∆σ

(−τ 2k + λ̂1τ
2r + 2πλ̂2) dµ(τ)

+

∫

R\∆σ

(−τ 2k + λ̂1τ
2r) dµ(τ) ≥ 0.

Now we put

dµ̂(t) = Aδ(t− τ̂ ) +Bδ(t− σ),

where A > 0 and B > 0 are defined from the conditions∫

R

τ 2r dµ̂(τ) = 1, 2π

∫

∆σ

dµ̂(τ) = δ2.

We have

Aτ̂ 2r +Bσ2r = 1, A =
δ2

2π
.

Hence

B =
1

σ2r
− δ2

2π

(
k

r

) r
r−k

.
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It can be easily verified that the condition B > 0 is equivalent to the

condition σ < σ̂. Since L(µ̂, λ̂1, λ̂2) = 0, we solve problem (46) for all
σ > 0.

It follows from Theorem 2 that the value of the problem (46) coin-
cides with the value of the problem
∫

R

τ 2k dµ(τ) → max,

∫

R

(λ̂1τ
2r + 2πλ̂2χσ(τ)) dµ(τ) ≤ λ̂1 + λ̂2δ

2.

Since delta functions can be approximate by step functions, the value
of (44) coincides with the value of the problem

∫

R

τ 2ku(τ) dτ → max,

∫

R

(λ̂1τ
2r + 2πλ̂2χσ(τ)u(τ) dτ ≤ λ̂1 + λ̂2δ

2,

u ∈ L1(R), u(τ) ≥ 0 almost everywhere on R,

Now it follows from Theorem 1 that it remains to find the solution
of the extremal problem

λ̂1‖x(r)‖2
L2(R) + λ̂2‖Fx− y‖2

L2(∆σ) → min, x ∈ Wr
2(R).

Passing to Fourier transforms and using the Plancherel theorem we
obtain the following problem

∫

∆σ

(
λ̂1

2π
τ 2r|Fx(τ)|2 + λ̂2|Fx(τ) − y(τ)|2

)
dτ+

λ̂1

2π

∫

R\∆σ

τ 2r|Fx(τ)|2 dτ → min, x ∈ Wr
2(R).

It can be easily verified that the solution of this problem is the function
x0 such that

Fx0(τ) =





(
1 +

τ 2rλ̂1

2πλ̂2

)−1

y(τ), τ ∈ ∆σ,

0, τ /∈ ∆σ.

Thus an optimal method of recovery has the form

m̂(y) =
1

2π

∫

∆σ

(iτ)k

(
1 +

τ 2rλ̂1

2πλ̂2

)−1

y(τ)eitτ dτ.

For the optimal recovery error we have the following equality

Eσ
2 (Dk,W r

2 (R), δ) =

√
λ̂1 + λ̂2δ2.
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For σ ≥ σ̂ we have

λ̂1 =
k

r

(
δ2

2π

)1−k/r

, λ̂2 =
1

2π

r − k

r

(
2π

δ2

)k/r
.

Consequently, in this case

Eσ
2 (Dk,W r

2 (R), δ) =

(
δ√
2π

)1−k/r

and the method

m̂(y) =

∫ σ

−σ

(iτ)k
(

1 +
δ2

2π

k

r − k
τ 2r

)−1

y(τ)eitτ dτ

is optimal.
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Let us show that the method

m̂(y) =

∫ bσ

−bσ
(iτ)k

(
1 +

δ2

2π

k

r − k
τ 2r

)−1

y(τ)eitτ dτ

is also optimal.
First, we note that for all σ > σ̂

Eσ
2 (Dk,W r

2 (R), δ) = Ebσ
2 (Dk,W r

2 (R), δ).

Since L2(∆σ) ⊂ L2(∆bσ) and for all y ∈ L2(∆σ) such that ‖Fx −
y‖L2(∆σ) ≤ δ the same inequality in L2(∆bσ)-norm holds, we have

sup
x∈W r

2 (R), y∈L2(∆σ)
‖Fx−y‖L2(∆σ)≤δ

‖x(k) − m̂(y)‖L2(R) ≤

sup
x∈W r

2 (R), y∈L2(∆bσ)
‖Fx−y‖L2(∆

bσ)≤δ

‖x(k) − m̂(y)‖L2(R) = Ebσ
2 (Dk,W r

2 (R), δ)

= Eσ
2 (Dk,W r

2 (R), δ).

It means that the method m̂ is optimal.
Now consider the case k = 0. Then for the extended dual problem

we have

L(µ, λ̂1, λ̂2) =

∫

∆σ

(−1 + λ̂1τ
2r + 2πλ̂2) dµ(τ)

+

∫

R\∆σ

(−1 + λ̂1τ
2r) dµ(τ).

Put

λ̂2 =
1

σ2r
, λ̂2 =

1

2π
.

Then for all µ

L(µ, λ̂1, λ̂2) = λ̂1

∫

∆σ

τ 2r dµ(τ) +

∫

R\∆σ

(
−1 +

( τ
σ

)2r
)
dµ(τ) ≥ 0.

For

dµ̂(t) =
δ2

2π
δ(t) +

1

σ2r
δ(t− σ)

the conditions ∫

R

τ 2r dµ̂(τ) = 1, 2π

∫

∆σ

dµ̂(τ) = δ2
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are fulfilled and L(µ̂, λ̂1, λ̂2) = 0. Similar to the arguments used above
we obtain that

(48) Eσ
2 (D0,W r

2 (R), δ) =

√
δ2

2π
+

1

σ2r

and the method

(49) m̂(y) =
1

2π

∫ σ

−σ

(
1 +

(τ
σ

)2r
)−1

y(τ)eiτt dτ

is optimal.
Thus, we prove

Theorem 11. Let r ∈ N, 0 < k < r, 0 < σ ≤ ∞, δ > 0, and

σ̂ =
( r
k

) 1
2(r−k)

(
2π

δ2

) 1
2r

.

Then

Eσ
2 (Dk,W r

2 (R), δ) =





σk

√
r − k

2πr

(
k

r

) k
r−k

δ2 +
1

σ2r
, σ < σ̂,

(
δ√
2π

)1−k/r

, σ ≥ σ̂

and the method

m̂(y) =
1

2π

∫ σ0

−σ0

(iτ)k

(
1 +

r

r − k

( r
k

) k
r−k

(
τ

σ0

)2r
)−1

y(τ)eiτt dτ,

where σ0 = min(σ, σ̂), is optimal.

If k = 0 and 0 < σ <∞, then the error of optimal recovery is given

by (48) and method (49) is optimal.

It follows from Theorem11 that for a given δ, starting from σ̂, further
extension of the interval on which the Fourier transform of a function
from W r

2 (R) is given with error δ in the L2(∆σ)-metric does not result
in a decrease in the recovery error. In other words, if the relation

(50) δ2σ2r ≤ 2π
( r
k

) r
r−k

between the input data and the size of the interval on which the data
is measured is violated, then the available information turns out to be
redundant. The inequality (50) may be considered as an uncertainly
principle.
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12. Generalization of the main theorems

Now we want to consider the case when the approximation of Fourier
transforms is given in the uniform norm. To obtain the appropriate
results we need a generalization of main Theorems 1 and 2.

Let X be a linear space, Y1, . . . , Yn be linear spaces with semi-inner
products (·, ·)Yj , j = 1, . . . , n, and the corresponding semi-norms ‖ · ‖Yj
(‖x‖Yj =

√
(x, x)Yj ), Ys = L∞(∆s), ∆s ⊆ R, s = n+ 1, . . . , p, Ij : X →

Yj, j = 1, . . . , p, be linear operators, and Z be a normed linear space.
Assume that

ω ⊂ {1, 2, . . . , n}, Ω = {1, 2, . . . , n} \ ω,
ψ ⊂ {n+ 1, n+ 2, . . . , p}, Ψ = {n+ 1, n+ 2, . . . , p} \ ψ.

We consider the problem of optimal recovery of the operator T : X → Z
on the set

Wωψ = { x ∈ X : ‖Ijx‖Yj ≤ δj, j ∈ ω,

|Isx(t) − ys(t)| ≤ δs(t), t ∈ ∆σ, s ∈ ψ }
(if ω = ψ = ∅ we take W = X) from the information about values of
operators Ij , j ∈ Ω ∪ Ψ given with errors. Throughout what follows
for functions from L∞(∆s) we will not note each time that inequalities
hold almost everywhere on ∆s. Let

Y =
∏

j∈Ω∪Ψ

Yj.

We assume that for any x ∈W we know the vector y = {yj} ∈ Y such
that

‖Ijx− yj‖Yj ≤ δj , j ∈ Ω, |Isx(t) − ys(t)| ≤ δs(t), t ∈ ∆σ, s ∈ Ψ.

Knowing the vector y we want to recover Tx.
Any operator m : Y → Z is admitted as a recovery method. Accord-

ing to the general setting the value

e(T,Wωψ, I, δ,m) = sup
x∈Wωψ

sup
y={yj}∈Y

‖Ijx−yj‖Yj≤δj , j∈Ω

|Isx(t)−ys(t)|≤δs(t), t∈∆σ , s∈Ψ

‖Tx−m(y)‖Z

is called the error of recovery of the method m (here I = (I1, . . . , Ip),
δ = (δ1, . . . δp)). The quantity

E(T,Wωψ, I, δ) = inf
m : Y→Z

e(T,Wωψ, I, δ,m)



63

is called the error of optimal recovery. A method delivering the lower
bound is called optimal.

The formulated problem of optimal recovery is closely connected with
the following extremal problem (we shall call it the duality extremal
problem)

(51) ‖Tx‖2
Z → max, ‖Ijx‖2

Yj
≤ δ2

j , j = 1, . . . , n,

|Isx(t)|2 ≤ δ2
s(t), t ∈ ∆σ, s = n+ 1, . . . , p, x ∈ X.

Theorem 12. Suppose that there exist measurable nonnegative func-

tions λ̂s on ∆s, s = n + 1, . . . , p, and λ̂j ≥ 0, j = 1, . . . , n, such that

the value of the extremal problem

(52) ‖Tx‖2
Z → max,

n∑

j=1

λ̂j‖Ijx‖2
Yj

+

p∑

s=n+1

∫

∆s

λ̂s(t)|Isx(t)|2 dt ≤ S,

x ∈ X,

where

S =

n∑

j=1

λ̂jδ
2
j +

p∑

s=n+1

∫

∆s

λ̂s(t)δ
2
s(t) dt

is the same as in (51). Moreover, assume that for all y = (y1, . . . , yp) ∈
Y1 × . . .× Yp there exists xy = x(y1, . . . , yp) which is a solution of the

extremal problem

(53)
n∑

j=1

λ̂j‖Ijx− yj‖2
Yj

+

p∑

s=n+1

∫

∆s

λ̂s(t)|Isx(t)− ys(t)|2 dt→ min, x ∈ X.

Then for all ω and ψ

E(T,Wωψ, I, δ) = sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖Z

and the method

(54) m̂(y) = Tx(ŷ),

where

(55) ŷ = {ŷj}pj=1, ŷj =

{
yj, j ∈ Ω ∪ Ψ,

0, j ∈ ω ∪ ψ,

is optimal.
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Proof. From Lemma 2 immediately follows the lower bound

(56) E(T,Wωψ, I, δ) ≥ sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖Z .

The upper bound. Consider the linear space E = Y1 × . . .× Yp with
the semi-inner product

(y1, y2)E =

n∑

j=1

λ̂j(y
1
j , y

2
j )Yj +

p∑

s=n+1

∫

∆s

λ̂s(t)y
1
s(t)y

2
s(t) dt,

where y1 = (y1
1, . . . , y

1
p), y

2 = (y2
1, . . . , y

2
p). Now the extremal problem

(53) can be rewritten in the form

‖Ĩx− y‖2
E → max, x ∈ X,

where Ĩx = (I1x, . . . , Ipx) and y = (y1, . . . , yp). It follows from Propo-
sition 1 that for all x ∈ X

(Ĩxy − y, Ĩx)E = 0.

Consequently,

‖Ĩx− y‖2
E = ‖Ĩx− Ĩxy‖2

E + ‖Ĩxy − y‖2
E.

Indeed, we have

‖Ĩx− y‖2
E = ‖Ĩx− Ĩxy + Ĩxy − y‖2

E

= ‖Ĩx− Ĩxy‖2
E − 2 Re(Ĩx− Ĩxy, Ĩxy − y)E + ‖Ĩxy − y‖2

E

= ‖Ĩx− Ĩxy‖2
E + ‖Ĩxy − y‖2

E.

Thus, for all x ∈ X

(57) ‖Ĩx− Ĩxy‖2
E ≤ ‖Ĩx− y‖2

E =

n∑

j=1

λ̂j‖Ijx− yj‖2
Yj

+

p∑

s=n+1

∫

∆s

λ̂s(t)|Isx(t) − ys(t)|2 dt.

Let x ∈ Wωψ, y = {yj} ∈ Y such that

‖Ijx− yj‖Yj ≤ δj , j ∈ Ω, |Isx(t) − ys(t)| ≤ δs(t), t ∈ ∆σ, s ∈ Ψ,

and ŷ be defined by (55). Put z = x − xby. Then it follows from (57)
that

n∑

j=1

λ̂j‖Ijz‖2
Yj

+

p∑

s=n+1

∫

∆s

λ̂s(t)|Isz(t)|2 dt = ‖Ĩz‖2
E ≤ S.
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Now for the method (54) we have the following estimate

‖Tx− m̂(y)‖2
Z = ‖Tz‖2

Z

≤ sup

{
‖Tz‖2

Z :

n∑

j=1

λ̂j‖Ijz‖2
Yj

+

p∑

s=n+1

∫

∆s

λ̂s(t)|Isz(t)|2 dt ≤ S

}

= sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖2
Z .

Consequently,

E(T,Wωψ, I, δ) ≤ sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖Z .

Taking into account the lower bound (56), we obtain that

E(T,Wωψ, I, δ) = sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖Z

and m̂ is an optimal method. �
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Now we obtain a sufficient conditions for coinciding the values of
problems (51) and (52) which are similar to the ones that were obtained
in Theorem 2. Put

L(x, λ) = −‖Tx‖2
Z +

n∑

j=1

λj‖Ijx‖2
Yj

+

p∑

s=n+1

∫

∆s

λs(t)|Isx(t)|2 dt

(here λ = (λ1, . . . , λp). L is the so-called the Lagrange function for
the extremal problem (51). We call x̂ ∈ X an extremal element if it is
admissible in (51) (that is, ‖Ijx‖2

Yj
≤ δ2

j , j = 1, . . . , n, |Isx(t)|2 ≤ δ2
s(t),

t ∈ ∆σ, s = n+ 1, . . . , p) and

‖T x̂‖2
Z = sup

x∈X
‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖2
Z .

Theorem 13 (sufficient condition). Suppose that there exist measur-

able nonnegative functions λ̂s on ∆s, s = n+1, . . . , p, nonnegative real

numbers λ̂j, j = 1, . . . , n, and x̂ ∈ X admissible in (51) such that

(a) min
x∈X

L(x, λ̂) = L(x̂, λ̂), λ̂ = (λ̂1, . . . , λ̂p),

(b)
n∑

j=1

λ̂j(‖Ij x̂‖2
Yj

− δ2
j ) +

p∑

s=n+1

∫

∆s

λ̂s(t)(|Isx̂(t)|2 − δ2
s(t)) dt = 0.

Then x̂ is an extremal element and

sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖2
Z

= sup

{
‖Tz‖2

Z :
n∑

j=1

λ̂j‖Ijz‖2
Yj

+

p∑

s=n+1

∫

∆s

λ̂s(t)|Isz(t)|2 dt ≤ S

}

= S.
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Proof. Let x ∈ X be an admissible element in (51). Then

− ‖Tx‖2
Z ≥ −‖Tx‖2

Z +

n∑

j=1

λ̂j(‖Ijx‖2
Yj

− δ2
j )

+

p∑

s=n+1

∫

∆s

λ̂s(t)(|Isx(t)|2 − δ2
s(t)) dt = L(x, λ̂) − S

≥ L(x̂, λ̂) − S = −‖T x̂‖2
Z +

n∑

j=1

λ̂j(‖Ijx̂‖2
Yj
− δ2

j )

+

p∑

s=n+1

∫

∆s

λ̂s(t)(|Isx̂(t)|2 − δ2
s (t)) dt) = −‖T x̂‖2

Z .

The same arguments show that x̂ is an extremal element in the problem

(52). The proof of the equality L(x̂, λ̂) = 0 is the same as in Theorem 2.
Now we have

sup
x∈X

‖Ijx‖Yj≤δj , j=1,...,n

|Isx(t)|≤δs(t), t∈∆σ , s=n+1,...,p

‖Tx‖2
Z = ‖T x̂‖2

Z = −L(x̂, λ̂) + S = S.

�

13. Optimal recovery of derivatives from Fourier
transforms given with an error in the uniform norm

Recall that the space F r
2,∞ is the set of all functions x such that x(r−1)

is locally absolute continues on R, x(r) ∈ L2(R), and Fx ∈ L∞(R).
F r

2,∞ is the set of functions x ∈ F r
2,∞ for which ‖x(r)‖L2(R) ≤ 1. Now

we consider the problem of optimal recovery of x(k), 0 ≤ k < r, on the
class F r

2,∞ from the Fourier transform of x given approximately on a
finite interval ∆σ = (−σ, σ), 0 < σ ≤ ∞, when the error is measured
in the uniform norm.

Assume that for any x ∈ F r
2,∞ we know y ∈ L∞(∆σ) such that

|Fx(t) − y(t)| ≤ δ(t), t ∈ ∆σ.

Knowing y we have to recover x(k). We define the error of optimal
recovery by

Eσ
∞(Dk, F r

2,∞, δ) =

inf
m : L∞(∆σ)→L2(R)

sup
x∈F r2,∞, y∈L∞(∆σ)

|Fx(t)−y(t)|≤δ(t), t∈∆σ

‖x(k) −m(y)‖L2(R).
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Theorem 14. Let r ∈ N, k ∈ Z+, 0 ≤ k < r, 0 < σ ≤ ∞, δ ∈
L∞(∆σ), δ(t) ≥ 0, and

σ0 = sup

{
a : 0 < a < σ,

1

2π

∫ a

−a

t2rδ2(t) dt ≤ 1

}
.

If σ0 <∞, then

Eσ
∞(Dk, F r

2,∞, δ) =

√
σ
−2(r−k)
0 +

1

2π

∫ σ0

−σ0

(t2k − σ
−2(r−k)
0 t2r)δ2(t) dt

and the method

(58) m̂(y) =
1

2π

∫ σ0

−σ0

(iτ)k
(

1 −
(
τ

σ0

)2(r−k))
y(τ)eiτt dτ

is optimal.

If σ0 = ∞, then

Eσ
∞(Dk, F r

2,∞, δ) =

√
1

2π

∫ ∞

−∞

t2kδ2(t) dt

and the method

(59) m̂(y) =
1

2π

∫ ∞

−∞

(iτ)ky(τ)eiτt dτ

is optimal.

Proof. In this case the dual problem has the form

‖x(k)‖2
L2(T) → max, ‖x(r)‖2

L2(R) ≤ 1, |Fx(t)|2 ≤ δ2(t), t ∈ ∆σ,

x ∈ F r
2,∞.

The Lagrange function has the form

L(x, λ1, λ2) = −‖x(k)‖2
L2(R) + λ1‖x(r)‖2

L2(R) +

∫

∆σ

λ2(t)|Fx(t)|2 dt.

Passing to Fourier transforms and writing (2π)−1|Fx|2 = u, we have

L(x, λ1, λ2) =

∫

∆σ

(
−t2k + λ1t

2r + 2πλ2(t)
)
u(t) dt

+

∫

R\∆σ

(
−t2k + λ1t

2r
)
u(t) dt

by the Plancherel theorem.
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First, let σ0 <∞. Let λ̂1 = σ
−2(r−k)
0 and

λ̂2(t) =

{
(2π)−1

(
t2k − λ̂1t

2r
)
, |t| < σ0,

0, |t| ≥ σ0.

Then

L(x, λ̂1, λ̂2) =

∫

|t|≥σ0

(
−t2k + σ0t

2r
)
u(t) dt ≥ 0

for all x ∈ F r
2,∞.

Set

γ = 1 − 1

2π

∫ σ0

−σ0

t2rδ2(t) dt.

If γ = 0, we define x̂ from the condition

F x̂(t) =

{
δ(t), |t| < σ0,

0, |t| ≥ σ0.

Then L(x̂, λ̂1, λ̂2) = 0,

‖x̂(r)‖2
L2(R) =

1

2π

∫ σ0

−σ0

t2rδ2(t) dt = 1.

Moreover, it is easy to see that∫

∆σ

λ̂2(t)(|F x̂(t)|2 − δ2(t)) dt = 0.

It means that conditions (a) and (b) of Theorem 13 are fulfilled.
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If γ > 0 (in this case, it is obvious that σ0 = σ), then we set

F x̂(t) =

{
δ(t), |t| < σ,√
A∆(t− σ), |t| ≥ σ,

where ∆(t− t0) is the delta function with the unit mass concentrated

at t0, A > 0. In this case L(x̂, λ̂1, λ̂2) = 0 and

‖x̂(r)‖2
L2(R) =

1

2π

∫ σ

−σ

t2rδ2(t) dt+
1

2π
Aσ2r.

Taking

A = 2πσ−2r

(
1 − 1

2π

∫ σ

−σ

t2rδ2(t) dt

)
,

we obtain that conditions (a) and (b) of Theorem 13 are fulfilled.
To obtain an optimal method of recovery we have to solve the fol-

lowing extremal problem

λ̂1‖x(r)‖2
L2(R) +

∫

∆σ

λ̂2(t)|Fx(t) − y(t)|2 dt→ max, x ∈ F r
2,∞.

Passing to the Fourier transform we get

∫

∆σ

(
λ̂1

2π
t2r|Fx(t)|2 + λ̂2(t)|Fx(t) − y(t)|2

)
dt→ max, x ∈ F r

2,∞.

It is easy to obtain the solution of this problem

Fxy(t) =






2πλ̂2(t)

λ̂1t2r + 2πλ̂2(t)
y(t), |t| < σ0,

0, |t| ≥ σ0.

That is,

Fxy(t) =





(
1 −

(
t

σ0

)2(r−k)
)
y(t), |t| < σ0,

0, |t| ≥ σ0.

Now for the considered case the result of the theorem immediately
follows from Theorem 12.
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If σ0 = ∞ (in this case, obviously, σ = ∞), then it follows from
Lemma 2 that

Eσ
∞(Dk, F r

2,∞, δ) ≥ sup
x∈F r2,∞

|Fx(t)|≤δ(t), t∈R

‖x(k)‖L2(R)

≥ ‖x̂(k)‖L2(R) =

√
1

2π

∫ ∞

−∞

t2kδ2(t) dt,

where x̂ is the inverse Fourier transform of δ. On the other hand,

eσ∞(Dk, F r
2,∞, δ, m̂) = sup

x∈F r2,∞, y∈L2(R)

|Fx(t)−y(t)|≤δ(t), t∈R

‖x(k) − m̂(y)‖L2(R)

= sup
x∈F r2,∞, y∈L2(R)

|Fx(t)−y(t)|≤δ(t), t∈R

(
1

2π

∫ ∞

−∞

t2k|Fx(t) − y(t)|2 dt
)1/2

≤
√

1

2π

∫ ∞

−∞

t2kδ2(t) dt

for the method (59). �

Corollary 3. Let δ(t) ≡ δ > 0 and

σ̂ = (π(2r + 1))
1

2r+1 δ−
2

2r+1 .

Then

Eσ
∞(Dk, F r

2,∞, δ) =





√
σ−2(r−k) +

2δ2(r − k)

π(2k + 1)(2r + 1)
σ2k+1, σ < σ̂,

√
2r + 1

2k + 1

(
1

π(2r + 1)

) r−k
2r+1

δ
2(r−k)
2r+1 , σ ≥ σ̂,

and the method (58) with σ0 = min(σ, σ̂) is optimal.

It follows from this corollary that for a given δ, starting from σ̂,
further extension of the interval on which the Fourier transform of a
function from in F r

2,∞ is given with error δ in the uniform metric does
not result in a decrease in the recovery error. In other words, if the
relation

δ2σ2r+1 ≤ π(2r + 1)

between the input data and the size of the interval on which the data
is measured is violated, then the available information turns out to be
redundant.
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From Corollary 2 and Corollary 3 we obtain

Corollary 4.

KF (k, r, 2,∞, 2) =

√
2r + 1

2k + 1

(
1

π(2r + 1)

) r−k
2r+1

Thus, we obtained the exact inequality

‖x(k)‖L2(R) ≤
√

2r + 1

2k + 1

(
1

π(2r + 1)

) r−k
2r+1

‖Fx‖
2(r−k)
2r+1

L∞(R)‖x(r)‖
2k+1
2r+1

L2(R).

14. Optimal recovery of derivatives in Rd

First we recall some facts about the Fourier transform in Rd. Let
x ∈ L2(R

d). Then the Fourier transform of the function x is defined as
follows

Fx(τ) =

∫

Rd

x(t)e−i〈τ,t〉 dt,

where τ = (τ1, . . . , τd), t = (t1, . . . , td), 〈τ, t〉 = τ1t1 + . . . + τdtd. It
follows from the Plancherel theorem that Fx can be considered as a
function from L2(R

d), moreover,

‖x‖2
L2(Rd)

=
1

(2π)d
‖Fx‖2

L2(Rd)
.

The inverse Fourier transform is given by the formula

x(t) =
1

(2π)d

∫

Rd

Fx(τ)ei〈t,τ〉 dτ.

For x ∈ L2(R
d) we denote by Dαx the Weyl derivative of order α which

is defined by

Dαx(t) =
1

(2π)d

∫

Rd

(iτ)αFx(τ)ei〈τ,t〉 dτ,

where
(iτ)α = (iτ1)

α1 . . . (iτd)
αd.

The Sobolev space Hr
2(R

d), r ≥ 1, is the set of functions x ∈ L2(R
d)

such that

‖x‖Hr
2(Rd) =

(
1

(2π)d

∫

Rd

(
1 + ‖t‖2

)r |Fx(t)|2 dt
)1/2

<∞,

where ‖t‖2 = t21 + . . .+ t2d. The Sobolev class is the set of functons

Hr
2(R

d) = { x ∈ Hr
2(R

d) : ‖x‖Hr
2(Rd) ≤ 1 }.
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We state the problem on optimal recovery ofDαx on the classHr
2(R

d)
in the L2(R

d)-metric from the information about approximate values
of Fourier transform Fx. Assume that for any x ∈ Hr

2(R
d) we know a

function y ∈ L2(R
d) such that

‖Fx− y‖L2(Rd) ≤ δ.

Knowing y we want to recover Dα.
We define the error of optimal recovery as follows

E2(D
α, Hr

2(R
d), δ)

= inf
m : L2(Rd)→L2(Rd)

sup
x∈Hr

2 (Rd), y∈L2(Rd)
‖Fx−y‖

L2(Rd)
≤δ

‖Dαx−m(y)‖L2(Rd).

Any method for which the infimum is attained we call an optimal
method of recovery.

Consider the duality problem

‖Dαx‖2
L2(Rd) → max, ‖Fx‖2

L2(Rd)
≤ δ2, ‖x‖2

Hr
2(Rd) ≤ 1.

Passing to Fourier transforms and using the Plancherel theorem, we
may rewrite this problem in the form

(60)

∫

Rd

|t|2αu(t) dt→ max, (2π)d
∫

Rd

u(t) dt ≤ δ2,

∫

Rd

(
1 + ‖t‖2

)r
u(t) dt ≤ 1, u(t) ≥ 0,

where |t|2α = |t1|2α1 . . . |td|2αd and

u = (2π)−d|Fx|2.
There is no existence of extremal function in this problem. Therefore,
we consider the extension of this problem for measures

(61)

∫

Rd

|t|2α dµ(t) → max, (2π)d
∫

Rd

dµ(t) ≤ δ2,

∫

Rd

(
1 + ‖t‖2

)r
dµ(t) ≤ 1.

The Lagrange function for this problem has the form

L(µ, λ1, λ2) =

∫

Rd

(
−|t|2α + (2π)dλ1 + λ2

(
1 + ‖t‖2

)r)
dµ(t).

Consider the function

G(t) = −|t|2α + (2π)dλ1 + λ2

(
1 + ‖t‖2

)r
.
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First, we suppose that αj > 0. For |t| > 0 we put ξj = 2 ln |tj |,
j = 1, . . . , d. Then

G(t) = e〈α,ξ〉F (ξ),

where ξ = (ξ1, . . . , ξd) and

F (ξ) = −1 + e−〈α,ξ〉
(
(2π)dλ1 + λ2

(
1 + eξ1 + . . .+ eξd

)r)
.

We show that F is a convex function for all λ1, λ2 ≥ 0. The function
F may be represented as follows

F (ξ) = −1 + (2π)dλ1f(ξ) + λ2g
r(ξ),

where

f(ξ) = e−〈α,ξ〉, g(ξ) =

d∑

j=0

e〈bj ,ξ〉, bj = −1

r
α + ej,

j = 0, . . . , d, e0 = (0, . . . , 0), (ej)k =

{
1, k = j,

0, k 6= j,
, j = 1, . . . , d.
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We have

d2gr(ξ) = r(r − 1)gr−2(ξ)

( d∑

j=0

e〈bj ,ξ〉〈bj , ξ〉
)2

+ rgr−1(ξ)

d∑

j=0

e〈bj ,ξ〉〈bj , ξ〉2 ≥ 0, d2f(ξ) = e−〈α,ξ〉〈α, ξ〉2 ≥ 0.

Consequently, d2F (ξ) ≥ 0. It means that F is convex.

Define ξ̂ = (ξ̂1, . . . , ξ̂d) from the condition

e
bξj = cαj , j = 1, . . . , d,

where c > 0 will be defined later, and find λ̂1, λ̂2 such that

(62) F (ξ̂) = 0, dF (ξ̂) = 0.

Set

σ =

d∑

j=1

αj, p =

d∏

j=1

α
αj
j .

Then

e〈α,ξ〉 =

d∏

j=1

(e
bξ)αj = pcσ.

Consequently,

F (ξ̂) = −1 +
1

p
c−σ

(
(2π)dλ1 + λ2(1 + cσ)r

)
.

We have

∂F

∂ξj

∣∣∣
ξ=bξ

= −e−〈α,bξ〉αj
(
(2π)dλ1 + λ2(1 + cσ)r − crλ2(1 + cσ)r−1

)
.

To satisfy (62) we obtain the following equalities

(2π)dλ̂1 + λ̂2(1 + cσ)r = pcσ,

(2π)dλ̂1 + λ̂2(1 + cσ)r = crλ̂2(1 + cσ)r−1.

Assume that σ < r and

(63) c >
1

r − σ
.
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Then

(64)

λ̂1 =
pcσ−1

(2π)dr
(c(r − σ) − 1) > 0,

λ̂2 =
pcσ−1

r(1 + cσ)r−1
> 0.

Conditions (62) together with convexity of F yield that F (ξ) ≥ 0 for
all ξ ∈ Rd. Consequently, G(t) ≥ 0 for all t ∈ Rd and G(τ̂ ) = 0, where
τ̂ = (τ̂1, . . . , τ̂d),

τ̂j =
√
cαj, j = 1, . . . , d.

If αj > 0, j ∈ Ω ⊂ {1, . . . , d} and αj = 0, j ∈ Ω \ {1, . . . , d}, then the
similar arguments show that for the function

G̃(t) = −|t|2α + (2π)dλ1 + λ2

(
1 +

∑

j∈Ω

t2j

)r

G̃(τ̂) = 0 and G̃(t) ≥ 0 for all t ∈ Rd. But in this case G(t) ≥ G̃(t) ≥ 0

for all t ∈ Rd and G(τ̂) = G̃(τ̂ ) = 0.
Put dµ̂(t) = Aδ(t− τ̂ ), where δ(t) is the delta function at the origin.

Then

min
dµ≥0

L(dµ, λ̂1, λ̂2) = L(dµ̂, λ̂1, λ̂2).

Define A from the conditions

(2π)d
∫

Rd

dµ̂(t) = δ2,

∫

Rd

(
1 + ‖t‖2

)r
dµ̂(t) = 1.

We have

(2π)dA = δ2, A
(
1 + ‖τ̂‖2

)r
= 1.

Hence

A = ∆2, c =
1

σ

(
∆−2/r − 1

)
,

where

∆ =
δ

(2π)d/2
.

From (63) we obtain that

δ < (2π)d/2∆0, ∆0 =
(
1 − σ

r

)r/2
.

If δ ≥ (2π)d/2∆0, we put

c =
1

r − σ
A =

1

(1 + ‖τ‖2)r
= ∆2

0.
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Then

(2π)d
∫

Rd

dµ̂(t) = (2π)d∆2
0 ≤ δ2,

which means that dµ̂(t) is an admissible measure. Note that in this

case λ̂1 = 0.
To find an optimal method of recovery consider the extremal problem

λ̂1‖Fx− y‖2
L2(Rd)

+ λ̂2‖x‖2
Hr

2(R
d) → min, x ∈ Hr

2(R
d).

Passing to the Fourier transform we have

∫

Rd

(
λ̂1|Fx(t) − y(t)|2 +

λ̂2

(2π)d
(1 + ‖t‖2)r|Fx(t)|2

)
dt→ min,

x ∈ Hr
2(R

d).

It can be easily obtained that the solution of this problem has the form

Fxy(t) =
(2π)dλ̂1

(2π)dλ̂1 + λ̂2(1 + ‖t‖2)r
y(t).

If δ < (2π)d/2∆0, then

λ̂2

(2π)dλ̂1

=
1

(1 + cσ)r−1(c(r − σ) − 1)
=

∆2−2/r

r − σ

σ
(∆2/r − 1) − 1

=
∆2

r − σ

σ
− r

σ
∆2/r

=
σ∆2

r(∆
2/r
0 − ∆2/r)

.

Thus for δ < (2π)d/2∆0 the method

(65) m̂(y) =
1

(2π)d

∫

Rd

(iτ)αy(τ)ei〈τ,t〉

1 +
σ∆2

r(∆
2/r
0 − ∆2/r)

(1 + ‖τ‖2)r
dτ
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is optimal and the error of optimal recovery can be calculated as follows

E2(D
α, Hr

2(R
d), δ) =

√
λ̂1δ2 + λ̂2

=

√
pcσ−1

r

(
∆2(c(r − σ) − 1) +

1

(1 + cσ)r−1

)

=

√
p(∆−2/r − 1)σ−1

rσσ−1

(
∆2

(
r − σ

σ
(∆−2/r − 1) − 1

)
+ ∆2−2/r

)

=

√
p

σσ/2
∆1−σ/r

(
1 − ∆2/r

)σ/2
.

For δ ≥ (2π)d/2∆0, taking into account that λ̂1 = 0 and c = (r − σ)−1,
we obtain that

E2(D
α, Hr

2(R
d), δ) =

√
λ̂2 =

√
p

rr/2
(r − σ)(r−σ)/2

and the method m̂(y) = 0 is optimal.
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We proved the following theorem.

Theorem 15. Let α = (α1, . . . , αd) ∈ R
d
+, α 6= 0, r ≥ 1 and σ < r. If

0 < δ < (2π)d/2∆0, then

E2(D
α, Hr

2(R
d), δ) =

√
p

σσ/2
∆1−σ/r

(
1 − ∆2/r

)σ/2

and the method (65) is optimal. If δ ≥ (2π)d/2∆0, then

E2(D
α, Hr

2(R
d), δ) =

√
p

rr/2
(r − σ)(r−σ)/2,

and the method m̂(y) = 0 is optimal.

Now we assume that the Fourier transform of x ∈ Hr
2(R

d) is known
with an error on some measurable set Ω ⊂ Rd. Then we define the
error of optimal recovery by

E2(D
α, Hr

2(R
d), δ,Ω)

= inf
m : L2(Ω)→L2(Rd)

sup
x∈Hr

2 (Rd), y∈L2(Ω)
‖Fx−y‖L2(Ω)≤δ

‖Dαx−m(y)‖L2(Rd).

It is easy to verify that for if Ω1 ⊂ Ω2, then

E2(D
α, Hr

2(R
d), δ,Ω1) ≥ E2(D

α, Hr
2(R

d), δ,Ω2).

It appears that there exists a set Ωδ ⊂ Rd such that for all measurable
sets Ω, Ωδ ⊆ Ω ⊆ Rd, the equality

E2(D
α, Hr

2(R
d), δ,Ωδ) = E2(D

α, Hr
2(R

d), δ)

holds. In other words, any information about the Fourier transform
obtained with the same error outside the set Ωδ does not lead to de-
creasing of the error of optimal recovery. Since for δ ≥ (2π)d/2∆0 we
do not use any information (optimal method of recovery is m̂(y) = 0)
for such δ, Ωδ = ∅.

The precise result can be formulated as follows.

Theorem 16. With the same conditions as in Theorem 15 for δ <
(2π)d/2∆0 put

Ωδ =

{
t ∈ R

d :
|t|2α

(1 + ‖t‖2)r
>

p

rσσ−1

(
1 − ∆2/r

)σ−1
∆2(1−σ/r)

}
.

Then for all measurable sets Ω such that Ωδ ⊆ Ω ⊆ Rd

E2(D
α, Hr

2(R
d), δ,Ω) = E2(D

α, Hr
2(R

d), δ),
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and the method

m̂(y) =
1

(2π)d

∫

Ωδ

(iτ)αy(τ)ei〈τ,t〉

1 +
σ∆2

r(∆
2/r
0 − ∆2/r)

(1 + ‖τ‖2)r
dτ

is optimal.
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Proof. The scheme of the proof is the same as in the previous theorem.
We consider the dual extremal problem. Then pass to the Fourier trans-
form and consider the Lagrange function for the extensional extremal
problem

L(µ, λ̂1, λ̂2) =

∫

Rd

(
−|t|2α + (2π)dλ̂1χΩ(t) + λ̂2

(
1 + ‖t‖2

)r)
dµ(t),

where λ̂1 and λ̂2 are defined by (64). It was proved that for all t ∈ Rd

−|t|2α + (2π)dλ̂1 + λ̂2

(
1 + ‖t‖2

)r ≥ 0.

If t /∈ Ω, then t /∈ Ωδ. Consequently,

|t|2α
(1 + ‖t‖2)r

≤ p

rσσ−1

(
1 − ∆2/r

)σ−1
∆2(1−σ/r) = λ̂2.

It means that
−|t|2α + λ̂2

(
1 + ‖t‖2

)r ≥ 0.

Since
−|τ̂ |2α + (2π)dλ̂1 + λ̂2

(
1 + ‖τ̂‖2

)r
= 0

we have
−|τ̂ |2α + λ̂2

(
1 + ‖τ̂‖2

)r
= −(2π)dλ̂1 < 0.

Hence τ̂ ∈ Ωδ. Then the proof proceed exactly in the same way as in
the previous theorem. �

Consider the following example. Let d = 2, r = 4, and α = (1, 1). In
other words, we consider the problem of optimal recovery of x′′t1t2 on the
class H4

2 (R2). It follows from Theorems 15 and 16 that for 0 < δ < π/2

E2(D
(1,1), H4

2 (R2), δ) =
1

2
√

2

√
δ

π

(
1 −

√
δ

π

)
,

Ωδ is the set of points (ρ sinϕ, ρ cosϕ) such that

1 + ρ2 <

(
δ

4π

(
1 −

√
δ

2π

))−1/4

ρ
√

| sin 2ϕ|,

and the method

m̂(y) =
1

(2π)4

∫

Ωδ

−τ1τ2y(τ1, τ2)ei(τ1t1+τ2t2)

1 +
δ2

4π2

(
1 −

√
δ
2π

)−1

(1 + τ 2
1 + τ 2

2 )4

dτ1dτ2

is optimal.
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15. Optimal recovery of values of derivatives and
Stechkin’s problem

We consider optimal recovery problem of x(k)(τ) where 0 ≤ k < r,
τ ∈ R, on the class F r

2,p by the information about the Fourier transform
Fx given on the interval ∆σ = (−σ, σ), 0 < σ ≤ ∞, with the error
δ > 0 in the metric Lp(∆σ). That is, we would like to find the error of
optimal recovery

Eσ
p (Dk

τ , F
r
2,p, δ) = inf

m : Lp(∆σ)→R

sup
x∈F r2,p, y∈Lp(∆σ)

‖Fx−y‖Lp(∆σ)≤δ

|x(k)(τ) −m(y)|

and an optimal method of recovery.
We also study the problem of best approximation of x(k)(τ), 0 ≤

k < r, τ ∈ R, on the class F r
2,p by the information about the Fourier

transform Fx given on the interval ∆σ by means of linear continu-
ous functionals on Lp(∆σ) with the norm not greater than some fixed
positive number N . It is in finding the value

(66) Sσp (Dk
τ , F

r
2,p, N) = inf

y∗
sup
x∈F r2,p

|x(k)(τ) − 〈y∗, Fx〉|

(where the lower bound is taken over all linear functionals y∗ on Lp(∆σ)
such that ‖y∗‖ ≤ N), and also a functional ŷ∗ delivering the lower
bound in (66) which is called extremal.

If we put x in (66) instead of Fx then we obtain the classical problem
of S. B. Stechkin, so (66) we also call the problem of Stechkin.

In view of the translation invariance of the classes under considera-
tion throughout what follows we assume that τ = 0.
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Theorem 17. Let r ∈ N, k ∈ Z+, 0 ≤ k < r, 0 < σ ≤ ∞, δ > 0,
1 ≤ p ≤ ∞, and for all x ∈ F r

2,p the equality

(67) x(k)(0) = 〈ŷ∗, Fx〉 + λ

∫

R

x(r)(t)x̂(r)(t) dt

holds, where ŷ∗ is some linear continuous functional on Lp(∆σ), λ ∈
R+, and x̂ ∈ F r

2,p satisfies the following conditions

(i) ‖F x̂‖Lp(∆σ) = δ,

(ii) ‖x̂(r)‖L2(R) = 1,
(iii) 〈ŷ∗, F x̂〉 = δ‖ŷ∗‖.

Then

(68) Eσ
p (Dk

0 , F
r
2,p, δ) = sup

x∈F r2,p,

‖Fx‖Lp(∆σ)≤δ

|x(k)(0)| = λ+ δ‖ŷ∗‖

and ŷ∗ is an optimal method of recovery. Moreover, for Stechkin’s prob-

lem for N = ‖ŷ∗‖
Sσp (D

k
0 , F

r
2,p, N) = λ

and ŷ∗ is an extremal functional.

Proof. It follows from (67) that for all x ∈ F r
2,p

|x(k)(0) − 〈ŷ∗, Fx〉| ≤ λ‖x(r)‖L2(R)‖x̂(r)‖L2(R) ≤ λ.

Thus,

(69) Eσ
p (Dk

0 , F
r
2,p, δ) ≤ sup

x∈F r2,p, y∈Lp(∆σ)

‖Fx−y‖Lp(∆σ)≤δ

|x(k)(0) − 〈ŷ∗, y〉|

≤ sup
x∈F r2,p, y∈Lp(∆σ)

‖Fx−y‖Lp(∆σ)≤δ

(|x(k)(0) − 〈ŷ∗, Fx〉| + |〈ŷ∗, Fx− y〉|)

≤ sup
x∈F r2,p

|x(k)(0) − 〈ŷ∗, Fx〉| + δ‖ŷ∗‖ = λ+ δ‖ŷ∗‖.

On the other hand, using the general result about the lower bound (see
Lemma 2) and taking (ii) and (iii) into account we have

Eσ
p (Dk

0 , F
r
2,p, δ) ≥ sup

x∈F r2,p,

‖Fx‖Lp(∆σ)≤δ

|x(k)(0)| ≥ |x̂(k)(0)|

=
∣∣〈ŷ∗, F x̂〉 + λ‖x̂(r)‖L2(R)

∣∣ = λ+ δ‖ŷ∗‖.
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It follows from this inequality and (69) equality (68) and the optimality
of the method ŷ∗.

We now proceed to the Stechkin problem. As was proved, there
exists an optimal method of recovery defined by a linear continuous
functional, therefore

Eσ
p (Dk

0 , F
r
2,p, δ) = inf

N>0
inf

‖y∗‖≤N

sup
x∈F r2,p, y∈Lp(∆σ)

‖Fx−y‖Lp(∆σ)≤δ

|x(k)(0) − 〈y∗, y〉|

≤ inf
‖y∗‖≤N

sup
x∈F r2,p, y∈Lp(∆σ)

‖Fx−y‖Lp(∆σ)≤δ

(|x(k)(0) − 〈y∗, Fx〉| + 〈y∗, Fx− y〉|)

≤ inf
‖y∗‖≤N

sup
x∈F r2,p

|x(k)(0) − 〈y∗, Fx〉| + δN = Sσp (D
k
τ , F

r
2,p, N) + δN.

Consequently, for all N > 0

(70) Sσp (Dk
τ , F

r
2,p, N) ≥ Eσ

p (Dk
0 , F

r
2,p, δ) − δN.

Hence from (68) for N = ‖ŷ∗‖ we obtain

Sσp (Dk
τ , F

r
2,p, N) ≥ λ.

On the other hand, in view of (67) we have

Sσp (D
k
τ , F

r
2,p, N) ≤ sup

x∈F r2,p

|x(k)(0) − 〈ŷ∗, Fx〉| = λ.

�

In view of the translation invariance of the space F r
2,p it follows from

Corollary 2 and (68) the following result.

Corollary 5. Assume that the conditions of Theorem 17 are fulfilled

for σ = ∞. Then

KF (k, r,∞, p, 2) = λ+ ‖y∗‖.
Corollary 5 states that if the conditions of Theorem 17 are fulfilled

for σ = ∞, then the exact inequality for derivatives has the following
form

(71) ‖x(k)‖L∞(R) ≤ (λ+ ‖y∗‖)‖Fx‖
r−k−1/2

r+1/p′−1/2

Lp(R) ‖x(r)‖
k+1/p′

r+1/p′−1/2

L2(Rd))
.
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Lecture 27

We start with the case when p = ∞.

Theorem 18. Let δ > 0, k, r ∈ Z, 0 ≤ k < r, 0 < σ ≤ ∞,

σ̂ =

(
π(2r + 1)(2r − 2k − 1)

2δ2(2r − k)

) 1
2r+1

,

and σ0 = min(σ, σ̂). Then

Eσ
∞(Dk

0 , F
r
2,∞, δ) =

σk+1
0

π

(
δ

k + 1
+

√
1

2r − 2k − 1

(
π

σ2r+1
0

− δ2

2r + 1

))

and the method

m̂(y) =
1

2π

∫

|t|<σ0

(it)k
(
1 − δλ|t|2r−k

)
y(t) dt,

where

λ =
σ−2r+k

0√
2r − 2k − 1

(
π

σ2r+1
0

− δ2

2r + 1

)−1/2

,

is optimal.

Proof. Let us prove that for all x ∈ F r
2,∞ the equality

(72) x(k)(0) =
1

2π

∫

|t|<σ0

(it)k
(
1 − δλ|t|2r−k

)
Fx(t) dt

+ λ

∫

R

x(r)(t)x̂(r)(t) dt

holds, where the function x̂ ∈ F r
2,∞ is such that

F x̂(t) =





(−i)kδ sign tk, |t| < σ0,

(−i)k
λt2r−k

, |t| ≥ σ0.

By the Plancherel theorem we have
∫

R

x(r)(t)x̂(r)(t) dt =
1

2π

∫

R

t2rFx(t)F x̂(t) dt.
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Therefore,

1

2π

∫

|t|<σ0

(it)k
(
1 − δλ|t|2r−k

)
Fx(t) dt+ λ

∫

R

x(r)(t)x̂(r)(t) dt

=
1

2π

∫

|t|<σ0

(
(it)k

(
1 − δλ|t|2r−k

)
+ λt2rikδ sign tk

)
Fx(t) dt

+
1

2π

∫

|t|≥σ0

(it)kFx(t) dt =
1

2π

∫

R

(it)kFx(t) dt = x(k)(0).

The equality ‖x̂(r)‖L2(R) = 1 is easily verified. Let us prove that
‖F x̂‖L∞(∆σ) = δ. For σ0 ≥ σ it is immediately follows from the defini-
tion of F x̂. Let σ0 < σ. Then σ0 = σ̂ and it is not difficult to verify
that (λσ̂2r−k)−1 = δ. Thus, |F x̂(t)| ≤ δ for |t| ≥ σ̂. We now verify the
fulfilment of the condition (iii) of Theorem 7. We have

(73) 〈ŷ∗, F x̂〉 =
δ

2π

∫

|t|<σ0

|t|k
(
1 − δλ|t|2r−k

)
dt.

Let us prove that 1−δλ|t|2r−k > 0 for |t| < σ0. In view of the definition
of σ0 we have

δ2σ2r+1
0 2(2r − k) ≤ δ2σ̂2r+12(2r − k) = π(2r + 1)(2r − 2k − 1).

Hence

δ2σ2r+1
0 (2r + 1) ≤ (2r − 2k − 1)(π(2r + 1) − δ2σ2r+1

0 )

= σ−2r+2k+1
0 (2r + 1)λ−2,

that is, δλσ2r−k
0 ≤ 1. Thus, for |t| < σ0, 1−δλ|t|2r−k > 1−δλσ2r−k

0 ≥ 0.
Consequently, the right-hand side of (73) is equal to δ‖ŷ∗‖. To complete
the proof it remains to apply Theorem 7. �

It follows by Theorem 18 that for σ ≥ σ̂

Eσ
∞(Dk

0 , F
r
2,∞, δ) = Kδ

2r−2k−1
2r+1 ,

where

(74) K =
(r + 1/2)

k+1
2r+1

k + 1

(
2r − k

π(2r − 2k − 1)

) 2r−k
2r+1

.

Thus in the problem under consideration the “saturation” effect of the
optimal recovery error is occurred which is in the fact that for a fixed
δ > 0 the knowledge of the Fourier transform of a function from F r

2,∞

given with the error δ in the uniform metric on the intervals larger than
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(−σ̂, σ̂) does not result in a decrease in the optimal recovery error. Thus
the violation of the relation

δ2σ2r+1 ≤ π(2r + 1)(2r − 2k − 1)

2(2r − k)

leads to the fact that the available information turns out to be redun-
dant. This fact is apparently important in practical applications when
we have to take into account that obtaining the additional information
requires some expense.

It follows from (71)

Corollary 6. Let k, r ∈ Z and 0 ≤ k < r. Then we have the exact

inequality

‖x(k)‖L∞(R) ≤ K‖Fx‖
2r−2k−1

2r+1

L∞(R) ‖x(r)‖
2k+2
2r+1

L2(R),

where the constant K is defined by the equation (74).


