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Lecture 1

1. INTRODUCTION

What does it mean to solve a problem in an optimal way? Assume
that we have a problem p to be solved. Usually we have some infor-
mation abut this problem. This information as a rule is incomplete
and/or inaccurate. We denote it by I(p). Suppose we have a method
(algorithm) m to solve this problem. The method m uses the infor-
mation /(p). To compare the quality of different methods with each
method m we have to associate a number indicating the error of the
solution of the problem. We denote this number by e(p, I, m).

Usually we want to have a method that can be applied to several
problems of the same type. Assume that we have a set of problems P.
Then for the set P the error of the given method m may be defined as
follows

e(P,I,m)=supe(p,I,m).
peEP

If we want to find a good method for problems P we have to find a
method for which the value e(P, I, m) as small as possible. Denote by
M the set of admissible methods. Then we want to find a method m
such that

e(P,I,m) = in/fw e(P,I,m)=: E(P,I, M).
me

We call the method m an optimal method and the value E(P, 1, M) is
called an optimal error.

It may appears that E(P, I, M) is not sufficiently small. Then we
may try to find another type of information about problems from P
that can provide a better error of solutions. In other words, we can
consider the following problem

inf E(P, 1, M),

Iel

where 7 is some set of information.
Let us consider some examples.

Example 1 (optimal interpolation). Let W be some class of functions
defined on a domain D. Denote by py the problem of finding f(t),
t € D, for a function f € W. Put

](pf) :](f) = (f(tl)a"'>f(tn))’ tj GD, jzl,,TL
Let M be the set of all mappings m: R” — R. We put
e(pg, I,m) = |f(t) = m(I(f))]-



Here P = {p;: f € W}. Thus,
(P 1.m) = sup ) = m(1(f))| = e(t,W. L),

To find an optimal method we have to consider the following problem

E(t,W,I,M)=inf Re(t, W,I,m).

R?—

This problem is called the problem of optimal recovery of a func-
tion f € W at a fixed point ¢ from the information about the values

Fta) s [ (tn)-

Example 2 (optimal integration). Let p; be the problem of finding
the integral

b
Li = [ s
for a function f € W. With the same I(f), P, and M we obtain the

problem of optimal integration on the class W from the information
about values of f at a fixed system of nodes

/ £(8) dt —m(I(f))].

Note that if instead of M we consider the set M, containing only
linear functions m, that is,

E(L,W,I,M)= inf sup

m: RP—R feW

m(I(f)) :Zajf(tj), a; €ER, j=1,...,n,

then we obtain the well-known problem of finding optimal quadrature
formula for the class W and a fixed system of nodes.

One may ask how to choose such points a < t; < ... < t, < b for
which the optimal error will be minimal. In this case we obtain the
following problem

E(L,W,I, M) = inf E(L,W, I, M),
c

where
IT={T:a<t1 <...<t, <b}.

Example 3 (optimal numerical differentiation). In notation of Exam-
ple 1 this is the following problem

E't,W,I,M)=inf sup|f'(t) —m(I(f))|

m: RP—R feW

Let us consider complete solutions of these problems for some simple
classes.



2. OPTIMAL INTERPOLATION FOR W1

Denote by WL the class of real functions f defined on the interval
[—1, 1], absolutely continuous, and satisfying the condition

|f'(t)] <1 almost everywhere on [—1,1].

Following Example 1 we put
e(t, W, I, m) = sup [ f(t) = m(I(f))],
fEWS,
Et,WL I)= inf e(t,WL, Ism),

m: R?*—R

where

L)y =(f(tr),..., f(tn), t=(t1,...,tn), —1<t;<...<t,<L1.

Denote by a(t) the nearest point to ¢ from the set of nodes {¢1,...,t,}
(in the case when ¢ is in the middle between ¢; and ¢;;; we set for def-
initeness a(t) = t;). Thus,

( t t
t, —1<t< 1; 2,
alt) =< t;, i 1l <t]+tj+1, =2...,n—1,
2 2
to -t
t, L+ t<1.
\ 2
Put
f(t) = [t —at)]
(see Fig. 1).
f(t)
-1 t1 iy t, 1 t

FIGURE 1
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It is obvious that f € WL and —f e WL. Moreover, If(f) =
It(—f) = 0. For any method m we have

~ -~

2(t) = |F(t) = m(0) = (= F(t) — m(0))|
< |F(t) = m(0)| +| = F(t) = m(0)] < 2e(t, WL, I, m).
Consequently, for all m
e(t, Wk, I, m) > f(t).
Hence
(1) Et, WL L) > F(t).

We obtain the lower bound. Now let us obtain the upper bound.
Define the method m by the equality

m(Ii(f)) = f(a()).
Then

Since |f'(7)| < 1 we have

Lf(t) = fla(®)| < |t —alt)] = f(1).
Thus, for all f € WL

We have
E(ta Woloa [f) < e(ta Wolm [fa T?L) < f(t>
Taking into account the lower bound (1), we obtain that
E(t, WL 1) = /(1)

and m ia an optimal method. Consequently, if we have function values
f(t1),..., f(t,), then an optimal method of recovery of f(¢) on the
class WL is the following

ft) = fla(t))
(see Fig. 2).



f(a(t)) f(ty)
f(t)
-1 t1 to t, 1 t
flta)|
FIGURE 2

3. OPTIMAL INTEGRATION FOR W1

For the same class WL and the same information I; consider the
problem of optimal recovery of the integral

Lf:/_llf(t)dt

As in the previous example any functions m: R™ — R are admitted as
recovery methods. The error of the method is defined as follows

ft)dt —m(Le(f))|-

-1

e(L,WL, I;;m) = sup

fewd

We are interested in the optimal recovery error

E(L,WL I;)= inf e(L, WL, I;ym)

m: R?*—R

and in an optimal method of recovery, that is, in the method for which
the lower bound is attained. Using the same notation for the function
f(t) = |t — a(t)| we obtain that for every method m

zllf(t)dtgl/llf(t)dt— ’ '/1 ) dt — m(0)

< 2e(L, WL, I;;m).

Thus, for every method m

(2) E(L,WL. I;) > /f

To obtain the upper bound consider the method

:/_11 f(a(t))dt:/_llﬁz(ft)dt



We can rewrite this method in the form

Aol = [ 7 s [ e [ )
_ (tl _2”2 + 1) Flt) + fs ; tlf(tQ) +o+ (1 — 715"1; t”) Fltn).

e(L, WL I, mg) = sup
fewl

We show that my is an optimal method. We have
1

frrou- [ roe|

< sup If(t)— flat)]dt < 1Ilf—OZ()Idt—/ f(t)dt.

fewl J-1 1

E(L,WL I;) < /f t) dt.

Taking into account the lower bound (2) we obtain that
E(L, Wy Ij) = f f(t) dt

and consequently the method my is optlmal.



Lecture 2

Let us try to find a system of nodes —1 < ) < ... < ¢ <1 for
which the error of optimal recovery will be minimal. In other words,
we consider the extremal problem

min /_ 11 F(t) dt.

—1<t1 <. <tr <1

We have to find t; < ... < t, to make the shaded area minimal (see
Fig. 3).

Y

—1hy t1 2h1 to 2hs | 13

FIGURE 3

Put
h0:t1—|—1, 2hj:tj+1—tj,j:1,...,n—1, hnzl—tn
Note that
ho +2hy + ...+ 2hy,_1 + h,, = 2.

Then
2

b hg 2 2 h
/1f(t)dt:?+h1+...+hn_1+7".

We use the Cauchy-Shwartz inequality

A
j=1 j=1

T

> agb;

j=1

Fora; =...=a, =1 it gives

T 1 r 2
Sot($0)
j=

J=1



Thus,

1
~ 1
/_1 ft)dt = 5(h%j +(RI+h) +.. +(h2_ +h2 ) +hRD)

>1(h0+2h1+...+2hn,1+hn)2_l
=2 24+2(n—1) n
If we take hg = hy = ... = h, = 1/n, then
/1f(t)dt—1
-1 _77/.
Consequently, the nodes
25 —1
0_ .
t;=—-1+ — j=1,...,n,

are optimal.

4. OPTIMAL RECOVERY OF THE DERIVATIVE FROM INACCURATE
INFORMATION

In the previous examples we use incomplete but exact information.
Indeed we usually have some error in any input data. Let us consider
the following problem with inaccurate information. We want to find
approximate value of f’(0) knowing approximate values of f at the
points —h, h, 0 < h < 1. We assume that

fewi={f:few,}
and we know the values f_1, f; such that

‘f(_h) - ffl‘ S 57
|f(h) = fil <6,

where § > 0 is the error of the input data. Any mapping m: R? — R is
admitted as a recovery method. The error of the method m is defined
as follows

¢' (W, Ij,m) = sup sup 1£/(0) = m(f=1, f1)l-
fewe, f-1,f1€ER
|f(5h)—£;1<6, j=—1,1
We are interested in the error of optimal recovery

E'(W2 I = nf (W2, I}, m)

and in an optimal method of recovery, that is, a method for which the
lower bound is attained.
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Put
12 h &6
- — 4= <t <
~ 2+<2+h)t’ 0<t<l,
ft) = 2 Eos
— — 4+ — —1<t<0.
2+<2+h)t, <t<0

1. The lower bound. It is easily verified that f,—f € W2 and

-~

f(—h) = —4, f(h) = 9. For any method m we have

Consequently;,
~ h ¢
E'(WZ,13) > f(0) = 5T
2. The upper bound. Consider the method
- _hi—fa
m(fo1, fr) = oh
Taking into account that f; = f(jh)+6;, j = —1,1, we have

(3)

e/(Wgoa Ig, T?L) = Ssup sup f(h) + 51 - f(—h) — 5_1

f'(0) =

FEWZ, |5;|<6, j=—1,1 2h
ﬂm—femla
< sup | f'(0) - T
fewz, (©) 2h h

To estimate the last supremum we need the following

Lemma 1. If f € W2, then for all T € [—1,1] there exists M € [—1,1]
such that
2

(4) F(r) = F(O) + £(O)r + M.

Proof. We have
/0 f'@)(r —t)dt :/0 (r=t)df'(t) = =7f'(0) + f(r) — f(0).
Since f € W2 we obtain
T 7_2
/ |T—t|dt’ -
; 2

Aﬂwmf%mﬁs
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Using (4) for 7 = h and 7 = —h, we have
2

F() = 7(0) + FOh+ M

f(=h) = f(0) = f'(0)h + Ml%.

Hence h h h
pio) = 1IN gyt
Consequently, for f € W2
: fh) = f(=h)| _ h
FO=-""5 <3z

Now it follows from (3) that

. h 6 o
¢ (W, Iy, m) < 5ty = f(0).
Taking into account the lower bound, we obtain that
h ¢
EWZ I} =—-+—
and method m is optimal.
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Lecture 3

Consider the problem of optimization of input information for the
value

h 6
EW2,I§) =%+
It is easy to see (see Fig.4) that this function (as a function of x) has

the unique minimum on the interval (0, 1] at the point

1
R V20, 0<6< =,
h = 2
. s> 1
bl —2
El
|
~ h
h
FIGURE 4
Thus,
1
V25, 0<d< =,
min E'(W2,I}) =< { 2
O<hsl §+& 525

5. RECOVERY OF A FUNCTION AT A POINT FROM INACCURATE
INFORMATION

Denote by Ly(R) the space of functions f defined on R for which

1/2
11| oy = ( / | f(t)|2dt) - .

Let W3 (R) be the space of locally absolutely continuous functions f €
Ly(R) for which || f|| ) < co. We denote by WW; the class of functions
f € W3 (R) for which [|f'||z,® < 1. For the class W, we consider
the problem of optimal recovery of the value f(0) from the information
about the function f given with the error 6 > 0 in the Ly(R)-norm. We



13

assume that for each function f € Wy we know a function y € Ly(R)
such that
1f = yllLaw) <
Knowing y we have to obtain a best possible approximation to the
value f(0).
Similar to the previous examples we are interested in the optimal
recovery error

Eo(W3, I3 = inf  eo(Wy, I, m),

m: La(R)—R

where

eoWy, I5,m) = sup  sup  [f(0) —m(y)l,
fewl  yeLq2(R)
Il f=yllLy®)y<o

and in optimal method of recovery (that is, in a method for which the
infimum is attained).

1. The lower bound. Let m: Ly(R) — R be an arbitrary method,
fe Wy, and ||f]|,@) < 6. Then

2| f(0)] < [£(0) = m(0)] + ] = £(0) = m(0)] < 2e0(Wy, I, m).
Thus,
eo(Wy, Ij',m) > | f(0)].
Taking the infimum over all methods m and then the supremum over
all functions f € Wj such that || f||z,®) < J, we obtain

Eo(Wy,I3) = sup  |f(0)].
fews
£ Ly r) <O

It is easy to check that the function
J&) = Voe st
belongs to the class W, and ||f|| Lo(r) = 0. Consequently,
(5) Ey(W3,IF) > |F(0)| = V3.
2. The upper bound. First we prove that for all f € W}

LSO < VI 2o + 1 O)]-

Using the Cauchy-Shwartz inequality, we have

uw—f®hzlfwmﬂstwmm)

Thus,
FOL<1F@) = FO)+ [FO)] < VI o + | £(0)]-



14

Consequently,
lim f(t)e 1% =0,

t—=+o0

To find optimal method of recovery we prove that for all f € Wy the
following identity

(6) f(0) = 2—1(5/@”|/5f(t) dt—%/e—””f’(t) sign ¢ dt
R

R
holds. We have

/oo e VoL (t) dt = /oo e VO df(t) = e—t/‘sf(t))zo + % /OO f(t)e 2 dt
0

0 0
——10+5 [ e ar
Thus,
1 [oe) [oe)
0) = = 7t/6d . —t/6 gt dt.
0= [ foetta= [ er o

In a similar way we obtain, that
0

f(0) = %/_0 f(t)et/5dt+/ O f(t) dt.

—00

Adding these two equalities we obtain that (6) holds.
Now let us estimate the error of the method

N 1 _
) = 55 [ w0 .

Assume that f € Wy, y € Ly(R), and || f — y||y®) < 0. Then
70 = @) = |70 - 55 [ 500 - 1)+ 1) a1
< |10 - g5 [ s + g [ - rayal.

Using (6) and the Cauchy-Shwartz inequality, we have

|f(0) —m(y)] < %/Re—u/aw(m dt+% /e—2|t/6 dt

R

171 2oy
< e—2tl/s gp = L2 (/5
<\ %

EO(W217[([5R> < 60(W217[6 ,T/T\L) < \/S

Hence



Taking into account the lower bound (5), we obtain

Eo(Wy, If) = sup [f(0)] = V3.
fews
11l Ly @)y<é

Moreover, the method m is an optimal method of recovery.

15
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Lecture 4

Let z be an arbitrary function from W;(R) such, that x # const.

Put
T

12'] £y(x)”
then f € W2. Set
2] 2o @)
||17,||L2(R)’

6:

then || f||z,®) = d. Since
FOI< sup  [f(0)] = V5,

fews
11l Ly ry <6
we have "
|2(0)] 1211 my
1/2
12"l 2@~ [l g
Thus,
1/2 1/2
(7) [2(0)] < [l e 121 -

This is one of the so-called inequalities of Landau—Kolmogorov type.
These inequalities play a significant role in optimal recovery problems.
On the other hand, inequality (7) may be considered as an uncertainty
principal. It stays that both the norm of the function and the norm of
the derivative could not be sufficiently small at the same time.

6. GENERAL SETTING

Let X be a linear space, Z be a normed linear space, and T: X — Z
be a linear operator. We consider the problem of optimal recovery of the
operator 7" on a set W C X from the information about many-valued
operator F': W — Y (for each x € W, F(z) is a set from Y). We
assume that for every € W we know an element y € F(z). Knowing
y we have to approximate the value Tx. Every mapping m: Y — Z is
admitted as a recovery method (or an algorithm) (see Fig. 5).

T

XOW

o,

FIGURE 5
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For a given method m we define the error of the method as follows

G(T, VV7F7 m) = Sup sup ||T:L‘ - m(y)HZ
zeW yeF(x)
The quantity
E(T,W,F) = .ixr}f Ze(T, W, F,m)

m

is called the error of optimal recovery.

Lemma 2 (the lower bound). Assume that the set
FH0)={xeW :F(z)=0}

is not empty and centrally-symmetric (that is, for any v € F~1(0),
—x € F71(0)). Then

BT W.F)> swp |Txs
x€F~1(0)

Proof. Let x € F~(0) and m be an arbitrary method of recovery. Then
since —x € F~1(0) we have

2Tall; = |Te — m(0) — (~Tax — m(0))]]2
< T2 —m(O)]z + || - T = m(O)l|z < 2¢(T, W, F,m).

Taking the supremum over all z € F~'(0) we obtain that for all
m:Y — Z

e(TvI/VaFa m) > sup ||T:L‘||Z
)

zeF~1(0
Consequently,
E(T,W,F)= inf e(T,W,F,m)> sup [Tzz.

m:Y—Z z€F—1(0)

g

Now we consider the problem of optimal recovery of linear operators
for linear spaces with semi-inner products. Recall that Y is a linear
space with a semi-inner product (-, )y, if there exists a mapping which
associates with every pair x,y € X a real (or, in general, complex)
number (x,y)y such, that

1. (z,z)y > 0.
2. (l‘,y)y = (yax)Y‘
3. (ax + By, 2)y = alz,2)y + 6y, 2)y, «,0€C.
Let X be a linear space, Y7,...,Y,, be linear spaces with semi-inner
products (-, -)y;, j = 1,...,n, and the corresponding semi-norms || - ||y,
(lzlly, = /(2. 2)y;), I;: X — Y}, j = 1,...,n, be linear operators,
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and Z be a normed linear space. We consider the problem of optimal
recovery of the operator T': X — Z on the set

(for £ = 0 we take W = X) from the information about values of
operators Iy 1, ..., I, given with errors. We assume that for any x € W
we know the vector y = (Y41, .- .,Yn) such that

| Lx —y;lly, <65, j=k+1,....n

Knowing the vector y we want to recover T'z.
Using the notation of the general setting, in this problem we have

1Lz —yilly, <6 j=k+1,...,n}.

Any operator m: Y1 X...xY,, — Z is admitted as a recovery method.
According to the general setting the value
e(T, Wy, 1,6,m) = sup sup [Tz —m(y)|z

TEW) y=(Yk15-Un)E€Yhp1X . X Yn
17 z—yjlly; <6, j=k+1,...n

is called the error of recovery of the method m (here I = (I3,...,1,),
9 = (d1,...9,)). The quantity
(8) E(T, Wy, 1,6) = inf e(T, Wy, 1,6, m)
m: Yy 1 X..XYp—2Z

is called the error of optimal recovery. A method delivering the lower
bound is called optimal.

The formulated problem of optimal recovery is closely connected with
the following extremal problem (we shall call it the duality extremal
problem)

9 Tz||?2 — max, |Lz||? <62, j=1,...,n, z€ X.
Z I IY; J
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Lecture 5

Now we formulate the main result. It what follows we will apply it
to many problems of optimal recovery.

Theorem 1. Assume that there exist /):j >0,75=1,...,n, such that
the value of the extremal problem

(1) [|T=]} —max, Y N[Lzl}, <Y No7, zeX
j=1 j=1

is the same as in (9). Moreover, assume that for ally = (y1,...,yn) €
Y1 x ... x Y, there exists v, = x(v1, . ..,Yyn) which is a solution of the
extremal problem

(11) > AillLz =yl — min, 2 € X.
j=1

Then for all k, 0 < k < n,

E(T, Wy, 1,5) = sup T2

zeX
”I]:E”YJS(SJV Jj=1,...n
and the method
(12) m(Ygsty - Yn) =Tx(0,. . 0, Yps1, -5 Yn)
s optimal.

To prove this theorem we need a preliminary result concerning a best
approximation property in a linear space with a semi-inner product.
Let Y be a linear space with a semi-inner product (-,-)y and L be a
subspace of Y. Let y € Y. Consider the problem of best approximation
of y by elements from L

(13) |l —y|ly — min, 2z € L.

Proposition 1. If 7 is a solution of (13), then for all x € L
(Z —y,x)y =0.

Proof. Suppose that there exists xy € L such that

(T —y,z0)y = a #0.
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Put z = 7 — Azg, where A = o/||zo||%. Note that z € L. We have

||Z—y||?/ = (T —Axg—y, T — Awg — y)y

=17 = ylly- — 2Re(@ — y, Azo)y + [AP*||zoll5-

=~ 2 oY |af” =~ 2 |af’ = 2
=17 = ylly =2Re(Aa) + =% = |7 = ylly = 7—= < 7 —yls-
[ oll3 [l zoll5
This contradiction proves the assertion of the theorem. O

Proof of Theorem 1. The lower bound. Since
FH0)={zeW:|Lzlly, <6, j=k+1,...,n}.

from Lemma 2 we have
(14)
E(T, Wy, 1,6) > sup \Tz| 7 = sup | Tx|| 2.

zeW zeX

The upper bound. Consider the linear space £ =Y; x ... x Y, with
the semi-inner product

W y)e = Z NI
=1

where y' = (yi,...,4}), ¥* = (v},...,y?). Now the extremal problem
(11) can be rewritten in the form

fo — szE — max, € X,

where Iz = (I, ..., I,z) and y = (y1, ..., yn). It follows from Propo-
sition 1 that for all z € X

(Izy —y, Iz)g = 0.
Consequently;,
12—yl = 1z — Tyl + 112y — %
Indeed, we have
11z =yl = Iz — Tz, + Tz, — yl%
= Iz — Izy|[; — 2Re(lz — Ty, Iz, — y)p + [Tz, -yl
= Iz — Iyl + |2y — ylE.
Thus, for all z € X
(15) [Tx — Ty |5 < |[Tx =yl = > NllLz =y,

j=1
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Let z € X and y = (0,...,0, Y11, .., ¥n) such that ||z —y;lly, < 0j,

j=k+1,...,n. Put 2 =2 — x,. Then it follows from (15) that
D AillLzly, = I1201E < A6
j=1 j=1

Now for the method (12) we have the following estimate

1Tz =@ (0,...,0,y1, . ya) 7 = IT2II7

< sup 172117
PR VIR o Ve
= sup 17|

zeX
Consequently;,
E(Ta Wkalaa) < G(T, Wkala(sam) < sup ”TxHZ
zeX
Taking into account the lower bound (14), we obtain that
E(T, Wy, 1,6) = sup | Tx|| ~
rzeX

and m is an optimal method.
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Now we obtain a sufficient conditions for coinciding the values of
problems (9) and (10). Put

Ll A) = | Tlly + D Al

J=1

(here A = (A1,...,An). L is the so-called the Lagrange function for
the extremal problem (9). We call 7 € X an extremal element if it is
admissible in (9) (that is, [|7;Z]], < ¢7) and

1727 = sup T2
reX
5218, <67, j=1,0uin

Theorem 2 (sufficient condition). Assume that there exist /):j > 0,
j=1,...,n, and T € X admissible in (9) such that

(@) minL(z,A)=LEN), A=A A)s

rzeX
(0 Y NULEE, - 6) =0.
j=1

Then T is an extremal element and

n
sup [Ty = sup Tl = " 30
zeX . rzeX ~ =1
2l <63, j=1,...n G Al sally, <3250 A7
Proof. Set

S = Zn: Xj62.
j=1

Let z € X be an admissible element in (9). Then

—ITal% > =Tl + Y N(ILelly, — 67) = L(x, ) = 5

j=1

> L@ —S=—|TZ)%+ > N(ILz]3 - 62) = —|T73%.

= ) Z J JNY; J Z
j=1

The same arguments show that 7 is an extremal element in the problem

(10).
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Now we prove that L£(Z, //\\) = 0. Suppose that L(Z, /):) =a > 0.
Consider zq = aZ, a < 1. We have

L(x0, \) = ’L(F,\) < L(F, ).
If a < 0, we put @ > 1. Then again
L(zo, N) = *L(T,\) < L(Z,N).
Consequently,
sup ITz]% = 173} = —L@EFN) + S = S.

zeX
1 152l13, <67, j=1,...n

7. OPTIMAL RECOVERY OF DERIVATIVES

Assume that we have the Fourier series for some 2m-periodic function
x:

+oo
z(t) = Z zje .
j=—00

Suppose that we know only a finite number of Fourier coefficients which
are given with an error. That is, we know Z;, |j| < N, such that

(16) lz; — %] <6, || < N.

Using the information {Z;};<y we want to recover the k-th derivative
of x.
One of the simplest methods of recovery is the following

¥ (1) & Z (ij)*a ;e

l7I<N

But it is not very good because for large j the error of terms (ij)*;
may be large. Since

[(i5) ;= (i5)* 5] < j*0
it may be of order j*§.

In practice this effect are known very well. Those who deal with such
problems simply cut the terms with high frequencies or smooth them
by some filter.

The problem which we would like to pose is: what is a best method

of recovery? Or, in other words, what is a best possible filter? Now we
give the exact setting of the problem.
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Denote by T the unit circle realized as the interval [—m, 7] with
identified endpoints. We denote by Lo(T) the set of square integrable
functions z on T with norm

1 1/2
== HFdt) .
lella = (57 [ lotPat)

The space WE(T) is the set of 2m-periodic functions x for which the
(r —1)-st derivative is absolutely continuous and ||2"||, ) < co. The
class W7 (T) is the set of 27-periodic functions from WJ(T) for which
Iz || oy < 1.

We assume that for every function z € W3 (T) we know the numbers
Zj, |7] < n, such that (16) is fulfilled. The problem is to find the value

EX(D*, W3(T), )
— inf sup l2® = m ()| £y
m: C2N+L Lo (T) 2eWS(T), i={Z;} <~
|z —2;]<6, [jISN

and a corresponding optimal method of recovery (that is, the method
delivering the lower bound).

Using notation of the general setting, here X = WI(T), Z = Ly(T),
Te = DFx = oW Y] = Ly(T), Yy = ... = Yoy = C, L1z = 27,
Lx=2_Nyj2,7=2,...,2N+2,61=1,0,=...=dont2 =0,

W={xeX:|hzly, <&}

Consider the dual problem

17) (™2, — max, (23,0 <1, P <63 I <N,
x e Wy (T).

The Lagrange function for this problem has the form
L(z, 5\) = —Hx(k)H%g(T) + )\HtT(T)H%Q(T) + Z )‘j|33j|2,
lJISN
where A = (A, A_n, ..., Ay). Since for all 0 < s <r

“+00

dO(t) = Y (i) wse,

j=—o00
we have

+o0
[P A

j=—o0
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Thus,
L, A) =D (=7 N7+ M)+ ) (=5 4+ A7)
li|<N 31>N
It follows from Theorem 2 that it is sufficiently to find an admissible
element 7 € Wj(T) and A= (X, PN ,XN) such that conditions (a)
and (b) of this theorem will be fulfilled and then to find a solution of
extremal problem (11).
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Lecture 7
Set
(18)  p=max{peZi:8Y <1 0<p<N}
l7l<p
Put
R SR YU KV Ve )
(po + 1)2r=k)’ ! 0, po+1<|j| <N,
' .
5’ ‘j‘ < Do,
I~ 1 2r .
Bi= = [1=0 ) ", lil=p+1,
\/§(p0 + 1) \/ |s|<po
\O’ ‘j‘ > Po + 1
Let us prove that
z(t) = Z fjeist
|s|<po+1

is admissible function in extremal problem (17). We have

/ZL'\(T) 2 — 52 827" +1— 52 SQr —1.
LQ(T)

Is|<po Is|<po

It remains to prove that if py < N, then |z;| < J. Suppose that

]‘ 2 2 2
S — T o°.
2o+ 1) (1 AP )>

|s|<po
It means that
52 Z s* < 1.
Is|<po+1
This contradicts the definition of pg.

Since
LX) = D (= + X"zl 20
l71>po+1
and L(z, X) = 0, condition (a) of Theorem 2 is fulfilled. We obtained
that HP”HLQ(T) = 1. Together with equalities |Z;| = 0, [j| < po + 1, it
gives that condition (b) of the same theorem is fulfilled, too.
Consider the extremal problem (11). It has the following form

Mz + Y Nlzy — &> — min, 2 € Wi(T).

l71<po
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We rewrite it in the form
Z (Njlzj — 757 + A% 2s]%) + A Z 7% |z;|* — min, x € Wi(T).
l71<po l71>po

Obviously, the solution of this problem is

-~

)\j - || <
=~ =~ X, JI = Do,
7] =N+ A
0, ‘]‘ > Do-

It follows from Thorem 1 that the method
() = (@) B (t) = Y (i) afeV"
l71<po

is optimal. Thus, we proved the following

Theorem 3. Let k,r € Z,, 0 < k <r, N € N, > 0, and py be
defined by (18). Then

1
N k r
(D", W(T).6) = \/W+5 2

l71<po
. 2(r—k)
Oéj =1- J .
po+1

Moreover, the method

m(z) = Y (ij) a;ie

l71<po

where

18 optimal.

Note that a; are monotonically decreasing as j various from 0 to py.
It means that the optimal method m smooths approximate values of
Fourier coefficients Z; for large j.
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Lecture 8

Consider some arguments which explain how to find A, Xj, l7] < N,
and 7. First, note that

= NN 20, SN = A 20, (] > N
Indeed, assume that for some s such that |s| < N

_ 5% s 4 XS < 0.

~ C, j: S,
T =
’ 0, j#s.
LEN) = (=% + As2 +N\)|ef? < 0.

In this case L(Z, /):) — —o00 as ¢ — o0o. Consequently,

Put

Then

min E(x,/_):) = —00.
xzeWJ(T)

The case |s| > N may be considered in a similar way.

Since L(Z, X) = 0 we have
(=7 N+ N)E =0, fl <N (= +A7)[E] =0, 5] > N.
It follows from condition (b) that if /):j # 0, then |Z;| = § and conse-

quently, —j%* + Xj% + Xj = 0. Suppose we take T; = 9, |j| < p, then
since 7 € WJ(T) we have
52 Z j2r < 1.

l71<p

Note also that A # 0 otherwise —j2* +:\\j2T < 0, |j| > p. Thus, we need
to choose 7 such that || 77| 1,(r) = 1. All these arguments lead to the
right choice of X, /)\\j, |7] < N, and Z.

Let 6 > 0 be a fixed number. If py < N, then the further increase
of the number of Fourier coefficients known with the same error § does
not decrease the error of optimal recovery. Thus for the fixed § the
system of 2N (§) + 1 Fourier coefficients (or 2N(J) coefficients for the
case k > 0, since in this case the zero coefficient is not used in the
optimal method m), where

N(5):maX{N€Z+:52 Zj2r<1},
l7I<N

allows to recover z*) with the best possible accuracy.
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Set 0y = o0,

—1/2
Sy = (Zﬂ‘) . os=1,2,....

lil<s

Then for § € [§541,05), s=0,1,..., N(0) = s.
Let r =2 and £ = 1. Then

EX(D.WHD).0) = s \/1 + 3 G+ 12 - 59)

l71<po

Using equalities

ijz _ nn+1)(2n+1)

j=1 0

", nn+1)2n+1)3B3n2+3n—1
(19) 3t = ot Din )

j=1

which may be easily proved by induction, we obtain

(20) E(D,W3(T), )

_ 1 \/1+52p0(p0+1)(p0+2)(2p0+1)(2p0+3).

Cpo+1 15

If £k =0, then

l71<po

1) EXDWHD).0) = \/1 F8 3 (o + 1t 54)

We give some values of function N(§) and the corresponding optimal
TeCOVery errors.



30

K N(3) | (BEX(D,W5(T),5))? | (EX (DO, W5 (T), 4))>?
= :
(1 1 ) 1 + 662 1 + 4662
13472 4 16
11 5 1 + 566 1+ 36167
_196’ 34 9 81
[ 1 1 5 1 + 25262 1 + 159662
_708’ 196 16 256

It may be directly verified that for n > 1
1\? 5
6 (n+§) <nn+1)2n+1)(Bn*+3n—-1) <6 (n+—) :
It follows from (19) that
2 1\° 2 1\’
— ([ N(O) + = it < Z (NG +=) .
2(vor+3) < X <2 (v +)
7SN (9)
In view of the definition of N () we have

—-1/2
(2. =< (Z )
lFISN(6)+1 l7ISN(5)

- (N((S) +§)5 <i<l <N(5) + %)5

Using these inequalities we obtain

5\ 3 5\ 1

Now from (20) and (21) we have

—-1/2

Thus,

EXOD.wHm0) = [

25

1/5
=) o)

o\ 1/5
ENO(D® WA(T),8) =5 (%) + O(5Y).
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Lecture 9

Now we consider the case when approximate values of Fourier coef-
ficients 7 ; satisfy the condition

+o0
Z |IL‘j — Zi'j|2 S 52.

j=—00

We define the error of optimal recovery as follows

EQ(Dka WZT(T)v 5)
= inf sup Hﬁc(k) = m(Z)]| Ly(r),
m: la—La(T) $€W2T(T), i:{ij}jezelQ
SIS =4[ <6?

where [, is the space of vectors {x;};ez such that

+oo
Z |2,]? < 0.

j=—00
Now the duality problem has the form

“+00
(22) (@2, — max, (20120 <1 Y P <6

j=—o00

x e Wy (T).
Consider the Lagrange function for this extremal problem

+oo
L(x, A, ) = —[l2®) 7,0y + Aalla® 7o) + A Z |,

j=—o0
+o0

= ) (= AT+ Ko

j==o0

Consider the function
F(x) = =1+ X220 £ 0272 2> 0.

It is easily verified that f(z) is a convex function. Thus, if f(s) =
f(s+1)=0,s>1, then forall j > 1, f(j)>0.
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For fixed s > 1 we find A; and A, from the condition f(s) = f(s+1) =
0. We have

/):152(“]“) + ng’% =1,
(s + 120 4 Xo(s+1)"2F = 1.

Hence,
1 (S+1)27’_S2T’
. (S + 1)2r82k _ SQT(S + 1)2k

N\, —
2 (s+ 1) — g2

It may be easily checked that /)\\1,//\\2 > 0. Thus, we have
E(ZL‘,/A\l,;\\Q) Z 0.

Put
(23) Z(t) = T, + /x\sﬂei(sﬂ)t.
Then

||§(T)||%2(T) - |/5L'\3|2S2T + |§s+1|2(3 + 1)27“'
To satisfy the conditions
+oo
(24) 12O ,m =1, > |3 =4
j=—00
we should have
|Z2s* + T [P(s + ¥ = 1,
|/5E\8|2 + |/x\s+1|2 =6

It follows from these equations that

P(s+1)r -1

~ 2
|Zs|” = (s+ 1) — 52

|§j\ |2_ 1_52821"
s+l — (s + 1) — §2r°

Thus, for

<o< L
(s+1)r — s"

7 is admissible function in (22) and £(Z, Ay, A2) = 0.
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If 6 > 1 we put wl;=1 and :\\2 = (0. Then

L(x,1,0) = Z] —1 + 7200252 > 0.

j=—o00

Let T = e. Then £(Z,1,0) = 0. Moreover,

+oo
1Z N oy =1, D 7P =1<0%

j=—o0

Consequently, 7 is admissible function.
Now it follows from Theorems 2 and 1 that in order to find an optimal
method of recovery we have to solve the following extremal problem

+oo
)\1”1'(7")”%2(T) + Ay Z ‘.%'j — i.j|2 — min, x € WS(T)
j=—00
Rewriting this problem in the form
400 - -
D g™l + Aelwy — &*) — min, 2 € Wi(T),
j=—00
we can easily find the solution of this problem
A
xo et 2

Ao + 2 A
It follows from Theorem 1 that the method

+o00 N

j==o0

is optimal for the considered problem. Thus we prove the following
result.

Theorem 4. Let k,n € N, 0 < k <n, and 6 > 0. Then for

1 1
§5<— s=1,2,...,
(s+1)"

1)2k — g2k
By (D*, WI(T),6) = \/523% +(1- 52321")&1 1) i

)27‘ — g2r '

Moreover, the method

+o0
S2k

-1
o ol e (51— i
m(zr) = Z (27) (1+] s26(s 4+ 1)2 — (s + 1)2ks2r z;je”

j==o0
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is optimal. For§ > 1, Ey(D* W5(T),d) =1 and the method m(%) = 0
18 optimal.
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Lecture 10

Consider again the following question: how to find Xl, /)\\2, and ¥ for
the Lagrange function of the dual problem. We give now a graphical
illustration which helps to answer this question.

Recall that the Lagrange function may be written in the following

form
—+o0

LM, 00) = D (=5 + Mg + Ay

j=—00

Consider the set of points on the plane R?

2r
Ty=7", .
(25) {yj-zjzk j=0,1,....
7 ;
If we plot the function
T = t2’r"
(26) {y _ ok t €0, +00),

then the points (25) belong to the plot of this function. The function
defined by (26) can be written in the form

k
y=x"", 0<—-<1.
r

It is a convex function. Consequently, the piecewise linear function
passing through the points (25) is also convex.

Let s2 < 62 < (s+1)>. Assume that the line y = A;2 + Ay passes
through the points (s?", s*) and ((s + 1)?", (s + 1)*). Then in view of
convexity for all points (52", 5%%), j =0,1,...,

ij S y(j21") — A1j21" + )\2.

It means that —j% 4+ A% + Ay > 0. Thus, for all z € Wi (T),
ﬁ(.f,/):l,/):Q) > 0.

Taking z; = 0, j # s,s + 1, and choosing ¥y and Zs;; from the
condition (24), we obtain that Z defined by (23) is admissible function

~ AN

and L(Z, A1, A2) = 0. Hence,

min  L£(z, A\, X)) = L(T, A1, A).
xeWs (T)

By the way,
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Thus,
-2
(Ea(D* wy(m),0))? = Y0,
The last value is the tangent of the angle between the line connected
the origin with the point (672 y(672)) and the axis O.

We see that in this problem in optimal recovery method (for the
case when 0 < 1) we use all information about approximate values of
Fourier coefficients. It appears that we can construct another optimal
recovery method that will use only a finite number of inaccurate Fourier
coefficients.

Consider the case when we know approximate values of the Fourier
coefficients Z;, |j| < N, such that

Z |33'j — i’j‘Q S (52.

l7I<N

In this case the duality problem has the form
2™ 7,y — max, 2PN, <1 Y JaP <67 @ e WE(T).
l71<N
The Lagrange function may be written in the following form
Lz, M) = D (=5 + Mg + X))o + D (=5 + ™)y
JI<N l3[>N
Assume that
2r 1 2r
ST <5 < (s+1)7,
s < N, and
(8 + 1)2k o 82k 1
(S + 1)2r —g2r — (N + ]_)2(rfk) ’
Then for the same \; and A, as in the previous case and any x € Wj(T)
we have

-

L(z, A\, A) > 0= L(Z, A1, \a),
where 7 is also the same as above.
Set

12k_ 2k 1
(27) sozmin{sEN:(S+) < }

(8 + 1)21" — g2r — (N + 1)2(1"71{)
Consider the line passing through the point (s3", s2%) which is parallel
to the line connected the origin and the point (N +1)%, (N + 1)%).
It has the form y = Ajx 4+ Ao, where

SV 1 T2k sy

M= T TS0 T e
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Now assume that 62 > s3". Put Z; = 0, j # so, N + 1, and Ty, Ty 11

define from the conditions
127, =1, D 3P =06

l7I<N

V1= 6282

(N+1)r

We put
Foo =0, [Faa] =

The function

~

IL‘(t) = fL’\SOeZSOt —+ /ZL'\N+1€Z(N+1)t

is an admissible and consequently is extremal in the duality problem

for the case when 672 > s2".

Now we consider the extremal problem for finding an optimal method

of recovery

“+00
)\1 Z j2r‘$j|2—|—)\2 Z \xj—£j|2—>min, l'EWén(T)

j=—00 lil<N

It may be rewritten in the following form

7 Owd® il + Nalwy — %) + M D ¥ |y — min, @ € W(T).

liI<N li|>N

We can easily find the solution of this problem

P
0 _ ~ ‘2/\1‘]’, |.7|§N7
Ti =19 A+ 7%\
0, |7] > N.
It follows from Theorem 1 that the method
L X2
(@) = 3 (1) ey
ﬂ;\; Ay + 72N\

is optimal.
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Lecture 11

Thus, for the problem

(28) By (D", W5(T),9)
= inf sup |2® — m(&)]| o(my
m: (C2N+1—>L2(T) JPEWQT(T), i:{jj}\j\SN
Pijl<n lri—75]2<8?

we obtain the following result.
Theorem 5. Let k,n, N € N, 0 < k <n, d >0, and sy be defined by
(27). Then for

(29)

<0< —, s=1,2,...,80—1,

1)2k — g2k

Moreover, the method

-1

- F\k 2r (s+1)% — s s Lijt

m(r) = %(’U) (1 T S e )
J

is optimal. For § > 1, EY(DF Wi(T),8) =1 and the method m (%) =
0 is optimal. For 0 < < (sp+1)7",

N/ nk r 2.2k 1_52ng
By (DY, W5 (T),8) = 4/ 6%s5 +m

and

o -1
~ AN - Nk J 5o it
m(z) = Z (17) (1 + RN T 120 = sg’") ;e

lil<N

1s an optimal method.

Now we wish to show that for § satisfying condition (29) it is possible
to construct an optimal method of recovery which uses, in general, less
approximate values of Fourier coefficients. Set

(s 4+ 1)%F — 5% . 1

(8 + 1)2r — g2 (N + 1)2(r7k)

In view of definition of sy, Ny < N. It follows from Theorem 5 that
B (D, W3(T),6) = BY (D", W3 (T), ).

(30) NS:min{NGN:
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Denote by m4 the optimal method of recovery obtained from Theorem 5
for N = Ny. We show that it is also optimal for the problem (28). We
have

eéV(Dk,WQT(T),(S, 75\?,1) = sup ”x(k) _ml(i')”LQ(T)
zeW3(T), ={Z;}j<n
X e =75 2<6°

< sup [2®) = 7y ()| o) = €3 (D*, W5 (T), 6, iy )
zeWF(T), 2={Z;} /<N
2 151<Ns |z —%5]? <8

= Ey* (D", W;(T),6) = Ey (D", W;(T), ).

Hence m; is optimal for the problem (28).
Now we can formulate a more precise version of Theorem 5.

Theorem 6. Let k,n, N e N, 0 < k <n, d >0, sg be defined by (27),
and Ny be defined by (30). Then for § satisfying (29)

(S + 1)2k _ 82k
(S + 1)27“ _ 827“'

EY (D", W3 (1), 8) = \/5 (1= 2s2)
Moreover, the method

1

ey Ak 2 (s+1)% — s* "

ma () = Z (i) (1 +J $% (s + 1)2r — (s 1 1)2ks2r je?
|71<Ns

is optimal. For § > 1, EY(DF Wi(T),8) =1 and the method m(z) =
0 is optimal. For 0 <6 < (so+1)7",

Nk 1irr 2 o2k 1 — 0%sg"
Ey (D", W5 (T),d) =/ d%s5 +m

and

o -1
P C Nk J ~ it
m@) =) (@) (1 TN T sgr) e

lil<N

1 an optimal method.

Let 0 < 6 < 1 be fixed. Suppose that s € N such that (29) is fulfilled.
If we want to recover z*) with the minimal error of optimal recovery
and the minimal number of using inaccurate Furier coefficients, than
this minimal number equals 2N(0).

Problems

Set

Ni(0) =Ng, d€l(s+1)7"<d<s).
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1. Find the asymptotic of Ny, as § — 0.
2. Find the asymptotic of Ey* (D W5 (T),8) = Ey(D* Wi (T),6)
as 6 — 0.

8. OPTIMAL RECOVERY OF DERIVATIVES (CONTINUOUS CASE)

We consider the analogous problem of recovery of derivatives for
functions defined on R. Namely, we want to recover z*) by information
about Fourier transform of z (which we denote by Fx) given with an
€error.

First we recall some facts about the Fourier transform. Let z €
Ly(R). Then the Fourier transform of the function z is defined as
follows

Fx(r) = /R x(t)e " dt.

It follows from the Plancherel theorem that Fz can be considered as a
function from Ly(R), moreover,

1
HHJH%Q(R) = gHFtTH%Q(R)-

The inverse Fourier transform is given by the formula

1 .
z(t) = — / Fx(r)e" dr.
27 Jr
We will need also the following well-known formula
Fa2® (1) = (it)*Fa(r).

Denote by Wj(R) the space of functions from Ly(R) such that z("—1)
is locally absolute continuous on R and (") € Ly(R). Let W3 (R) be
the class of functions from Wj(R) for which ||z, &) < 1.
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Lecture 12

We state the problem on optimal recovery of z*), 0 < k < r on the
class W3 (R) in the Lo(R)-metric from the information about approxi-
mate values of Fourier transform Fx. Assume that for any x € W (R)
we know a function y € Ls(R) such that

| Fz — yll L@ <0

Knowing y we want to recover ),
We define the error of optimal recovery as follows
Ey(D*, W3 (R),0) = inf sup |2®) — m(y)| Lo w)-
m: La(R)—La(R) z€WI(R), yeL2(R)
IFz—yll Ly @) <o

Any method for which the infimum is attained we call an optimal
method of recovery.
Consider the duality problem

™7, ) — max, (207, & <1, |IFzll,@m < 6% zeWj(R).

Passing to Fourier transforms and using the Plancherel theorem, we
may rewrite this problem in the form

(31)
/T%u(T) dT — makx, /TQTU(T) dr <1, 27?/ u(7)dr < 62,
R R R
u € L1(R), wu(r)> 0 almost everywhere on R,

where u(t) = (2m) | Fx(7)|%. There is no existence of extremal func-
tion in this problem. Therefore, we consider the extension of this prob-
lem for measures

(32) /T% du(T) — max, /TQT du(t) <1, 27r/ du(r) < 6%
R R R

The Lagrange function for this problem has the form

L, A1, A2) = /(—T% + AT 4 27 Ng) du(T).

R
9%k
y_T I
x=rT1".

We have y = 2"/", 0 < k/r < 1. Using the same arguments as above we
want to find such A; and A, that for all points of the curve y = 2%/ the

Counsider the function

k/r



42

inequality —y + /Xlx + 271'//\\2 > 0 will be fulfilled. Consider the tangent

of this curve at some point (7Z", 75%)

2k __ k 2k_2T(ZL‘ 27’)'

— 15" = -7, — T,
) 0 70 0
Since the function y = 2*/" is concave we have that for all points of
this curve
k r—=k
—y 4 —72F 2y 4 2k > 0.
r
Set
~ k ~ 1 r—k
N\ = _7_2]{727' Ny = _T2k
P T agT0 Ty

Then for all 7
—72F N T 4210 > 0.

Hence for all p, E(,u,/):l,:\\g) > 0.
Now consider a measure concentrated at the point 7

du(r) = Ad(t — 7).

Choose A and 7y from the conditions

/ A =1, 2m / dii(r) = 62
R R

) o\
A:%, 7'0:(§> .

Moreover, L(j, :\\1,:\\2) =0.
It follows from Theorem 2 that the value of the problem (32) coin-
cides with the value of the problem

We have

/ % dp(t) — max, /(”)\\17% + 271’:\\2) du(r) < A+ Aol
R R

Since measures AJ(T — 7p) can be approximate by step functions, the
value of (31) coincides with the value of the problem

/ *u (1) dr — max, /(:\\17% + 27T/):2)u(7') dr < A1+ X6,
R R
u € L1(R), wu(r)> 0 almost everywhere on R,

Now it follows from Theorem 1 that it remains to find the solution
of the extremal problem

)‘1H~’U(T)H%2(R) + N\o|| Fz — yH%2(T) — min, z € Wi(R).
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Passing to Fourier transforms and using the Plancherel theorem we
obtain the following problem

/ <;\—71TTQT|Fx(T)|2 M| Fa(r) - y<7>|2> dr — min, 2 € Wy(R).
R

It can be easily verified that the solution of this problem is the function
o such that

N\ -1
T\ 5 k -
F =1 - =1+ — 2 :
xo(7) ( + 27?)\2> Y ( + S kT ) Yy

Thus, we prove

Theorem 7. Let k,r € N, 0 <k <n, and 6 > 0. Then

Ba(DA W1 R),0) = (2= ) -

and the method

02k -
m(y) = /R(iT)k (1 + Dy k72r> ye'' dr

18 optimal.
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It follows from Theorems 1 and 7 that

5 1 I{I/T’
(k) Y

sup T = .
W R H ||L2(R) ( /or >

1F2]| Loy <6
It means that for all z € W (R) such that ||Fz|[,m®) <6

6 17]’»‘/1"
) el < (=)

Let f € Wi(R) and f # 0. Put

= = | Pallp =

1F O 2oy
Substituting = to (33) we obtain

r—k r—k
1 saiey (L) (L)
1f O oy — \27 1A 2Ry

Thus we obtain the following inequality

1 f | o)
1 Lo

r—k

1 or 1-k/r ) k/r
N e € L

This inequality is exact. It means that we cannot replace the number
(2)~=k)/7) by any smaller number.
In view of the equality

||Ff||%2(R) = 277||f||%2(11a)
it follows from (34) that

1—-k/r i k/r
(35) 19 amy < I IFO NS

The last inequality is known as the Hardy—thtlewood—Pélya inequality.
It is the one from a big set of the so-called Landau—Kolmogorov type
inequalities for derivatives.

9. LANDAU-KOLMOGOROV INEQUALITIES FOR DERIVATIVES AND
OPTIMAL RECOVERY

Exact inequalities for derivatives have been attracting the attention
of many mathematicians for many years. The first result in this field
was obtained by E. Landau in 1913 who proved that for all functions
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x € Loo(R4) with the first derivative locally absolutely continuous on
R, and 2” € Lo (R, ) the following exact inequality

1/2 H //H1/2

12 ooy < 202l @y 12712 s

holds. Then in 1914 Hadamard proved the exact inequality
o/ |z < V2l gyl 12 .

The first general result was obtained by Hardy, Littlewood, and
Pélya. In 1934 they proved inequality (35).
Probably the most remarkable result was obtained by Kolmogorov
in 1939 who proved that
1-k/r k/r
el N2

12 sy < —= I

where
4 > (_1)s(m+1)
K, =— -
T ; (25 + 1)m+l

are the Favard constants.

Let WI(T) be the set of all functions x with the (r — 1)st derivative
locally absolutely continuous on 7' = R or R and 2" € L,(T). The
general problem of Landau-Kolmogorov type exact inequalities may
be formulated as follows: find a minimal constant K = K(k,r,p,q, s)
such that for all functions x € WI(T') N L,(T) the inequality

(36) |2 ¥ 0y < Kll2llg, ey leIZ, )

holds, where 0 < k <r, 1 <p,q,s < o0.
If there exists a constant K that for all x € Wi (T)NL,(T') inequality
(36) is fulfilled, then o + 3 = 1. Indeed, let x # 0 be a function from

WI(T) N Ly(T). Consider the function Az, A > 0. Substituting this
function in (36), we obtain

Ma® |z, < XK 2|g, 2

(T) '

The only case to have such inequality for all A > 0 is the case when
a+ (=1
Now consider the function x(At). We have

(A, ey = (/ (M) ‘pdt) o (%/R\x(r)v’m)w

— Ail/pH{L‘HLp(T).
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Substituting the function x(At) in (36), we obtain
/\k_l/pHx(k)HLp(T) < K/\_(l_ﬁ)/q||x||1L;(BT))\(7"_1/S)f@||x(T)

B
Ls(T)
Thus we have

k=1/p=—1-05)/q+(r—1/5)5.

_k+1/q-1/p
b= r+1/g—1/s
We proved that if there exists a constant K that for all x € WI(T') N
L,(T) inequality (36) is fulfilled, then this inequality should have the
following form

Hence

8 il o S
B 1l < Kl 1
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Proposition 2. If K is the exact constant in (37), then for all § > 0

—k+1/p—1/s
k T /F —7°
sup [a®|p,ry = K& e
2€WT (T)NLy(T)
el zg(ry <0

III(”IIL <1

Proof. Since K is the exact constant in (37), for any € > 0 there exists
a function z. € WI(T) N L,(T), x # 0, such that

r+ s r+ s
”xé )HLP(T) = (K — )HxEHLq(T . |, q

For the function f.(t) = Axz.(A\t), A, A > 0, we have
1 eory = AN ey, Fellgery = AN e,y

Putting
A= ( < 2y )TH/QUS A= !
NN Loy Ar=1/o)|2 1ry

we obtain

17 =1, |fellz,m) =4
Consequently,
r—k+1/p—1/s
sup (e, ry > (1P| Lgry = (K = e)d 7777
2EW! (T)NLy(T)
l2llLy () <o

el Ly () <1

Since ¢ is an arbitrary positive number we have

r—k+1/p—1/s
Sup |2,y > K& Th7a175
ZE€WS (T)NLy(T)
lzllLy (<o
(™| Ly (1) <1
The upper bound follows immediately from (37). 0
Corollary 1.
K = sup ”x(k)”Lp(T)
TEW?T(T)NLy(T)
lzllLg(m <1

||1(T)||L5(T)§1

is the exact constant in (37).
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Now we establish the connection of optimal recovery problems with
the exact constants in Landau-Kolmogorov inequalities for derivatives.
Consider the problem of optimal recovery of ¥, x € WI(T) N L,(T),
in L,(T)-metric on the basis of inaccurate information about =, where
W(T) is the set of functions from W’ (T) for which ||z 1 ) < 1. We
assume that for all z € W7 (T') N Ly(T') we know a function y € L,(T)
such that ||z — y||z ) < 0. Knowing y we want to recover 2 in an
optimal way. In this case the error of optimal recovery is defined as
follows

EX(D*, WI(T) N Ly(T), 6)

= inf sup sup Hx(k) — m(y)|| L, 1)
m: Lq(T)—Lp(T) x€WI(T)NLy(T) yELq(T)
lz—yllL,(r)<é

It follows from Lemma 2 that

E;(D* W] (T)N Ly(T),6) > sup [, x).
TEWT(T)NLg(T)
lzllry () <6
”z(r)”LS(T)Sl

Thus we obtain the following result.

Theorem 8. If K is the exact constant in equality (37), then for all
0>0

r—k+1/p—1/s

E;(DF,WI(T) N Ly(T),8) > K& 7.
10. INEQUALITY FOR DERIVATIVES WITH FOURIER TRANSFORM

In (34) we obtain the exact inequality where we estimate the k-th
derivative by the r-th derivative and the Fourier transform of function.
Consider the following general problem. Let Fg, denote the space of
functions x € W (R) for which Fz € L, (R). The problem is to find
a minimal constant Kr = Kg(k,r,p,q,s) such that for all functions
z € Fg, the inequality

(38) 29| ,m < KrlFellg,@le®l7, g

holds, where 0 < k <r, 1 <p,q,s < o0.
The same arguments as above show that o + 3 = 1. Now consider
the function x,(t) = z(At). We have

; 1 A 1
Fy(r) = / p(M)e T dr = 3 / o(u)e™ N du = T Fa (%) .
R

R
Substituting the function x(At) in (38), we obtain

N2 0|y < KA OO0/ P78 AC=1/97)20)

g
Ls(R)
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Thus we have

k—=1/p=—-1-p8)(qg—1)/qg+ (r—1/s)8.

Consequently,
Cor4+1/g —1/s
where ¢’ is defined as follows
1 1
qa g

We proved that if there exists a constant Kp that for all z € F_,
inequality (38) is fulfilled, then this inequality should have the following

form
r—k+1/p—1/s k+1/q' —1/p

(39) el < Kl Fal g™ 1ele ™
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Similarly to Proposition 2 we obtain

Proposition 3. If Kr is the exact constant in (39), then for all § > 0
r—k+1/p—1/s
sup ||1'(k)||Lp(]R) = Kpd m1/d-1/s
TE€EF g,
lFzll L, ®)<o
2 Lg (ry <1

Corollary 2.
k
Krp= sup [z,
z€F g,
1F2| Ly @) <1
||1(r)||L5(R)S1

is the exact constant in (39).

Now we state the problem of optimal recovery of z®), z € Fg, in

L,(T')-metric on the basis of inaccurate information about Fz, where
Fy, = Fo,NWI(R). We assume that for all z € I}, we know a function

y € Ly(T) such that ||Fx -y, < 0. Knowing y we want to recover

™ in an optimal way. In this case the error of optimal recovery is

defined as follows

E(D*Fl6)= if  sup  sup |2 —m(y)|s,m)
m: Lg(T)—Lp(R) z€EFE, y€Ly(T)
I1Fz—yllL,®) <o

It follows from Lemma 2 that

Ey(D"Fp0) 2 s 2@,

1F2| L, @) <o
[EXd PR

The analog of Theorem 8 is

Theorem 9. If K is the exact constant in equality (39), then for all
0>0

k - T*k+1//p*1/s
E‘](D 7qua5) > KF5 ri/d'=1/s
It follows from (34) (since in this inequality the constant is exact)
that

r—k

1 2r
Kp(k,r,2,2,2) = (2—) .

7

Now we find the exact constant Kg(k,r,2,¢q,2) for 2 < ¢ < oo.
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Theorem 10. Letn € N, 0 <k <r, and 2 < g < oo. Then
KF(ka'raQaqa 2)

r—k
B \/r +1/2—1/q ( Ft+1/2— 1/qu/2—1/q> R

k+1/2—-1/q \/ﬂ(r—k)l—l/q
where
B k+1/2—-1/q _1—-1/q
10) s=8 (g )
and

B(a,b) = /1 (1 —x)de
is the Euler beta function. '
Consider the extremal problem
2™ )12, @ — max, IFzll], @ <1, l2)7,m <1
This problem can be rewritten in terms of the Fourier transforms as

1 q/2
(41) /t%u(t) dt — max, /uq/Q(t) dt < (—) :
R R 2

™
/t%(t) dt <1, u(t) >0,
R

where u = (27)~!|Fz|?. For this problem the Lagrange function has
the form
L(u, A1, Ag) = /(—tzku(t) + M2 (t) 4+ Aot* u(t)) dt.
R
It follows from Theorem 2 that if we find a function u admissible in
(41) and Lagrange multipliers Aj, Ay > 0 such that
(@) min L£(u, A1, A2) = LT, A1, Ao,

u(t)>0

®) A (/Ru(t)q/? dt — %) =0,
() X ( /R 2ru(t) dt — 1) =0,

then u will be a solution of problem (41). Set X2 = o 2M) where
parameter o > 0 will be defined later. Since for any fixed ¢t and 0 > ¢

the function
2r

flx) = =tz + X\a?? +

20—k "
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attains its minimum at the point

1
~ 2 2k 2 C
T (K (t B (,w_k))) /

2r t2r

~ t R N R

we have

for all u(t) > 0 and any A1 > 0, where

1
2 2 a/2-1
%
alt) = (@ (t aW))) M=o

07 ‘t| > 0.

Thus, condition (a) is satisfied. We take o and A1 such that conditions
(b) and (c) are satisfied:

/2
q/2 o t2k B t27’ q;12_1 dt _ i Q/Q
K . 5 2(r—F) o ’
1
o t27’ q/2—1
2r 2k _
,u/at (t - UQ(rk)) dt =1,

()
m =1 —= .
g\

Making the change of variable ¢t = oy, we obtain

1 /2 q/2
2/1‘1/2011/%]6—1"’1/ yq/%k—l (1 — y2(7’—k))‘172_1 dy = (QL) ’
0 T

where

1
r(q—2) 1
2M0_q/22—k_1+27”+1/ yzk;ﬂzlz (1 _yz(r—k))q/2—1 dy = 1.
0
Now putting
y = Tﬁ’
we obtain

1 q/2

gk 1 kt1/2-1/q _ q/2 1

p gt F B2/ 1(1 — )T dr = | — ’
r—=kJo 2m

1

2%k 1 k+1/2-1/q 1

Maq/2_1+2r+1—k/ T =R (1—2/9) (1 _ 7—) a2=1 dr = 1.
r—=~rJo
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Expressing the resulting integrals via the value of beta function B
defined in (40) and using the property of beta function

Bla+1,b) = %B(a,IH—l),

we obtain
. B 1\??
q/2 q/TIilH S
pee r—k (27?) ’
2 o (K+1/2-1/9)B _ 1
He r—k2
Hence
(r— k)2 2k _9r-1
42 = q/2-1
(42) = r12-1/9B°
and
(43) V2m(r — k)Y T
o= )
(172~ 1]a) PR

Taking into account (42), we have

N +1/2—-1/q o, _
2k0(t) dt = T—U 2(r—k),
/R (*) kE+1/2—1/p

Substituting there the value o given by (43), we obtain that for all
2<g< o0

k)

Sup ||17( [ L2®)
ze]—}rq

IFzllL, @) <1

2| Ly r)y <1

_ r—k
r+1/2—1/q [ \/k+1/2 = 1/qBY2"a\ /2710
k+1/2-1/q V2 (n — k)1-1/a '

Now the theorem follows from Corollary 2.
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11. OPTIMAL RECOVERY OF DERIVATIVES FROM FOURIER
TRANSFORMS GIVEN ON A FINITE INTERVAL

Let us return to the problem of optimal recovery of the k-th deriv-
ative of functions from WJ(R) on the basis of inaccurate information
about their Fourier transforms. But now we will consider the case when
the Fourier transform Fz is given on a finite interval A, = (—o,0),
o> 0.

We assume that for any function x € WJ(R) we know y € La(A,)
such that

[Fz =yl 1o, < 6.
The error of optimal recovery is defined as follows
E5(D*, W5(R), ) = inf sup 12 =1 ()| Lacw)-
m: La(Ag)—L2(R) zeWF(R), yeL2(As)
1Fz—yllL,(ay) <o
In this case the dual problem has the form
(44) W70 — max, |e|F, @ <1, [F2ll, 0, <6
r € Wy (R).

Passing to Fourier transforms and using the Plancherel theorem, we
may rewrite this problem in the form

(45)
/Tzku(T) dT — max, /TQTU(T) dr <1, 27?/ u(7)dr < 6%,

R R Ay
u € L1(R), wu(r)> 0 almost everywhere on R,

where u(r) = (27)7!|Fz(7)|?. Since there is no existence we, again
consider the extension of this problem for measures

(46) /T% du(T) — max, /72’" du(t) <1, 27?/ du(t) < 62
R R Aa

The Lagrange function for this problem has the form

L1, M\, X)) = /(—72’“ + M7+ 2T X, (2)) dp(T),

R
where
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Consider the function

_ 2
y=17-
=71

We have y = 2%/", 0 < k/r < 1. Consider the tangent of this curve at

some point (78", 73%)

k
2k 2k—2r 2r
Yy—"To —;To (x—15").

Since the function y = z*/"
this curve

is concave we have that for all points of

k r—k
—y + TRy g2k > 0.
r

Set

~ ok g0 = 1 ,r—k
AL = ;To% SEPYE 57'0% ;
Then for all 7
—72F N T 4 21 > 0.
Now let us find & such that for all 7 > &
—r2k +X172’" > (.

It can be easily obtained that

1

1
—~ DTS —k) T\ 2(r—k)
_ 2(r—k) __
g = )\1 = (E) T0-

Assume that ¢ > &. Then for all u

L1, A1, Ao) = / (=72 4+ X7+ 27As) dp(T)

Ag
+/ (=% + :\\17'%) du(r) > 0.
R\A,

Now consider a measure concentrated at the point 7
du(t) = Ad(T — 10).

Choose A and 7y from the conditions

/TQT du(t) =1, 27r/ dii(t) = 6%
R Ay

52 21 2
A = g, T0 = (ﬁ) .

Moreover, L(f, /):1,/):2) = 0.

We have



56

Thus, it follows from Theorem 2 that for the case

1
-~ r 27"1— r 27"1— 27T 2r
2a= (1) o= (1) ()

we solved the extremal problem (46).
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Now we consider the case when ¢ < &. The line y = 02*~")z passes
through the points (0,0) and (0%, 0?"). Let us find a point 7 such that
the tangent of the curve y = z*/" at the point 72" is parallel to the line
y = o?k="g. We have

E(%Qr)k/rfl — O_2(kfr).

1

R kN 2(0—Fk)

T=1— .
r

The equation of the tangent has the form

Hence

(47) Y = M + 27T \s,
where
k
~ ~ 1lr—Fk [(k\"F
\ = 2(k—r) Ao — — n 2k.
1= ’ T o r r “

Since the function y = 2*/" is concave and the line (47) is a tangent,
we have that for all points of this curve

-y + /)\\133' + 271'/):2 > 0.
Moreover, for all t > o, —t* + /)\\1t2T > 0. Thus for all

Ll R) = / (% 4 R + 2m0) dpu(7)

As
—l—/ (=% + :\\17'%) du(r) > 0.
R\A,
Now we put
du(t) = Ad(t —7) + Bo(t — o),
where A > 0 and B > 0 are defined from the conditions

/TQT du(r) =1, 27T/ dpi(t) = 62
R AO’

52
AP L Bo¥ =1, A=—.
2T

We have

Hence

T

2 r—k
B L O (YT
o2 2w \r
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It can be easily verified that the condition B > 0 is equivalent to the
condition o < 7. Since L(fi, A1, Ag) = 0, we solve problem (46) for all
o> 0.

It follows from Theorem 2 that the value of the problem (46) coin-
cides with the value of the problem

/ % dp(1) — max, /(Xﬁz’" + 271'/):2)(0(’7')) du(r) < A1+ Ao,
R R

Since delta functions can be approximate by step functions, the value
of (44) coincides with the value of the problem

/ 7*u (1) dr — max, /(:\\17% + QW/):QXJ(T)U(T) dr < A1 + Ao62,
R R
u € L1(R), wu(r)> 0 almost everywhere on R,

Now it follows from Theorem 1 that it remains to find the solution
of the extremal problem

)‘1H~’U(T)H%2(R) + Xo||[Fx — yH%Q(AG) — min, z € W5(R).

Passing to Fourier transforms and using the Plancherel theorem we
obtain the following problem

/ <ﬁ72r|m<7>|2 + Rl Fa(r) - y<7>|2> dr+
Ay 27T

//\\1 2r 2 : T

— 7| Fx(7)|*dr — min, x € Wi(R).
27T ]R\Ag

It can be easily verified that the solution of this problem is the function
o such that

~ -1
T2T/\1
1+ —= T), TEA,,
FJ;O(T) = ( 277')\2) y( )

0, T ¢ A,.

Thus an optimal method of recovery has the form

N\ -1
_ 1 : o) ,
m(y) = %/A (iT)" <1 + 2 A1> y(7)e" dr.

271')\2

For the optimal recovery error we have the following equality

ES(D*, WI(R),5) = \/ A1 + A262.



For o > o we have

/A\ _E 5_2 1-k/r /A\ _i?”—k? 2_7T k/r
7 \on ’ 2T o 02 '

Consequently, in this case

B (04, Wi(R).0) = () o

and the method

ily) = /_U(m'f (1+5—2 i TQT>_1y(T)ei”dT

o 2rr — k

is optimal.

59
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Let us show that the method

m(y) = /a(w)’f (1+5—2 i T2r>1y(7')emd7'

5 2rr —k

g

is also optimal.
First, we note that for all 0 > &

EZ(D*, W3 (R),6) = E5 (D", W5 (R),9).

Since Lo(A,) C Lo(Az) and for all y € Lo(A,) such that ||[Faz —
YllLo(a,) < 6 the same inequality in Ly(Ag)-norm holds, we have

sup Hx(k) - m(y)”Lz(R) <
zeWJ(R), yeLa(As)
IFz—yllLy(ap) <6

sup 2% = ()| o) = B3 (D*, W5 (R),0)
z€WF(R), y€L2(Az)
IFz—yllLyas)<o

— B(DF, Wi (R),0).

It means that the method m is optimal.
Now consider the case k = 0. Then for the extended dual problem
we have

L0 2, R) = / (=1 4+ M7 + 27%) dpu(7)

As
T / (—1 4+ 27 dpa(r).
R\A,

Put

Then for all p

~

‘c(,ua/):h)\Q) = X1/

Ag

T dp(T) + /R\AU (—1 + <§)2) dp(T) = 0.

() + %5@ o)

For
52
di(t) = —
Aalt) = 50

the conditions

/7’2’" du(r) =1, 27T/ dii(t) = &
R Aoy
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are fulfilled and L(f, A1 /):2) = 0. Similar to the arguments used above
we obtain that

4 r / 0° 1
(48) E2 (D07W2 (R)aé) = % + o2

and the method

(19 = [ (14(2)) wretar

is optimal.
Thus, we prove

Theorem 11. Letr e N, 0 <k <r,0<o<o0, §d >0, and

) 1
~ <T>§Gfm 21\ 2
o= (- — )

k 02

k

—k [(k\F 1 R
ok [l — 02+ —, o<o,

2r \r o2r

5 1-k/r
(\/ 27?) ’ ’
and the method

m(y) = %/JO (i1)F <1+ Tik (%)ﬁ (%>2r>_ly(T)ede’

Then

E7(D*, W5 (R),8) =

\V;
Q)

—o00

where 0 = min(o,d), is optimal.
If k=0 and 0 < 0 < 00, then the error of optimal recovery is given
by (48) and method (49) is optimal.

It follows from Theorem11 that for a given , starting from @, further
extension of the interval on which the Fourier transform of a function
from WJ(R) is given with error ¢ in the Ly(A,)-metric does not result
in a decrease in the recovery error. In other words, if the relation

(50) S0 <21 (%) o

between the input data and the size of the interval on which the data
is measured is violated, then the available information turns out to be
redundant. The inequality (50) may be considered as an uncertainly
principle.
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12. GENERALIZATION OF THE MAIN THEOREMS

Now we want to consider the case when the approximation of Fourier
transforms is given in the uniform norm. To obtain the appropriate
results we need a generalization of main Theorems 1 and 2.

Let X be a linear space, Yi,...,Y, be linear spaces with semi-inner
products (-, -)y;, j = 1,...,n, and the corresponding semi-norms || - ||y,
(lzlly, = /(. 2)y;), Yo = Lo (Ag), A, C R, s =n+41,...,p, [;: X —
Y;, 7 =1,...,p, be linear operators, and Z be a normed linear space.
Assume that

wCAql,2,....,n}, Q={1,2,....n}\w,
vC{n+1Ln+2,....p}, V={n+1,n+2,...,p}\ .

We consider the problem of optimal recovery of the operator T': X — Z
on the set

Wy ={z e X |[zly; <9, j € w,
L (t) — ys(t)] < 6s(t), t € Ay, sEV}

(if w =1 = 0 we take W = X)) from the information about values of
operators [;, j € QU V¥ given with errors. Throughout what follows
for functions from L. (As) we will not note each time that inequalities
hold almost everywhere on A;. Let

v= ]I v

JEQUY

We assume that for any x € W we know the vector y = {y;} € ) such
that

||‘[jx - yJHYJ < 5]'7 .] € Qv |st(t) - ys(t)| < 5s(t)7 te AO’) se W

Knowing the vector y we want to recover T'z.

Any operator m: ) — Z is admitted as a recovery method. Accord-
ing to the general setting the value

e(T, Wy, I,0,m) = sup sup Tz —m(y)| 2

2€EWoy y={y;}€y
1z—y;lly; <d;, jEQ
[Lsz(t)—ys (¢)|<ds(t), tEAS, sEY
is called the error of recovery of the method m (here I = (Iy,...,1,),
d = (d1,...9,)). The quantity
E(T Wy, 1,0)= inf (T, Wy, I,0,m)

m: Y—Z
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is called the error of optimal recovery. A method delivering the lower
bound is called optimal.

The formulated problem of optimal recovery is closely connected with
the following extremal problem (we shall call it the duality extremal
problem)

(51) |Tel} —max, Lo}, <8 j=1.....n,
|[Lax(t))* < 02(t), t€A,, s=n+1,...,p, v€X.

Theorem 12. Suppose that there exist measurable nonnegative func-
tions \s on Ag, s =n+1,...,p, and \; > 0, j =1,...,n, such that
the value of the extremal problem

(52) ||Tz||% — max, Z)\ 11; x||Y + Z / (t)| Lz (t)|* dt < S,

s=n-+1
r e X,
where
n R P R
S=> NG+ > / IMOLHOL
j=1 s=n+1 s
is the same as in (51). Moreover, assume that for ally = (yi1,...,yp) €
Y1 X ... x Y, there exists x, = x(y1, ...,Yp) which is a solution of the
extremal problem
(53)
ZAHIx yilly, + Z / t)|La(t) — ys(t)? dt — min, z € X.
s=n-+1
Then for all w and
E(T7 Ww¢7[75> = sup HT.’L’HZ

z€X
||I]'2?||Yj§(5j, jil ..... n
[Isz(t)[<ds(t), t€As, s=n+1,...,p

and the method

(54) m(y) = Tx(y),
where
PO .y yj, JEQUY,
55 =g, gi=1"
(55) y={yti-1, ¥ {0, i WU,

18 optimal.
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Proof. From Lemma 2 immediately follows the lower bound
(56) E(T, Wy, 1,0) > sup | Tx|| 2.
b's

The upper bound. Consider the linear space £ =Y; x ... x Y, with
the semi-inner product

(v',y E—Z)\ i)y, + Z/ y2(0) dt,
s=n+1

where y' = (yi,... ,yp), v = (17, .. ,yp). Now the extremal problem
(53) can be rewritten in the form

||fx — y||% — max, x¢€ X,

where Iz = (Iiz, . . ., Ix) and y = (y1,...,yp). It follows from Propo-
sition 1 that for all z € X

(fxy —y, Iz)g =0.
Consequently,
1z =yl = 1z — Ty | + 112y — ylE.
Indeed, we have
11z = yllE = |11z — Ty + Tz, -yl
= Tz — Izy|[; — 2Re(lz — Ty, Izy — y)p + [Tz, =yl
= Iz — Iy |5 + 1z, — ] %

Thus, for all z € X

(57) |z — Iy ||} < |1z —yllE = D> Al =y,

j—l

+ Z / ()| Lz(t) — ys ()] dt.

s=n+1
Let x € Wy, vy = {y;} € Y such that

1w —yilly, <05, G € [Lalt) —ul0)] <000, t € Ay, s €W,

and y be defined by (55). Put 2 =  — z3. Then it follows from (57)
that

ZA||Iz||Y+ Z/ OIL=0O dt = [T < 5.

s=n+1



Now for the method (54) we have the following estimate

1Tz —w(y)lz = IT=%
< sup{ ITz||% : Z/\ 12113, + Z / O Iz(t) | dt < s}
s=n+1
- sup [T
rzeX
11;zlly; <65, j=1,...,n
‘st(t)lgés(t)y teAs, s=n+1,....p
Consequently;,
E(Ta Wwwvlaé) < sup ||T'r||Z

z€X
IIIijIYjS(Sja j:l,...,n
|st(t)|§55(t)v teAs, s=n+l,..,p

Taking into account the lower bound (56), we obtain that
E(T, Wy, 1,0) = sup | Tz| 2

zeX
[Is2(t)|<0s(t), t€Ay, s=n+1,..p

and m is an optimal method.

65
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Lecture 20

Now we obtain a sufficient conditions for coinciding the values of
problems (51) and (52) which are similar to the ones that were obtained
in Theorem 2. Put

LleN) = —||Tal + ZA||M||Y+ Z/ Ol L () dt

s=n+1

(here A = (A1,...,Ay). L is the so-called the Lagrange function for
the extremal problem (51). We call Z € X an extremal element if it is
admissible in (51) (that is, ||[z]|}, < 67,7 =1,...,n, [Lz(t)]? < 63(t),
teA,,s=n+1,...,p) and

1737 = sup 17|

zeX
||Ijz||yj§5j7 j=1l,...n
[Is2(t)|<ds(t), tEAs, s=n+1,....p

Theorem 13 (sufficient condition). Suppose that there exist measur-
able nonnegative functions Ay on Ag, s=n+1,...,p, nonnegative real
numbers A;, 7 =1,...,n, and T € X admissible in (51) such that

-~ ~ ~

(a) minL(a, N =L@N, A=00n..0),
TE
ZA (1215, — &) + Z (O] = 65(1)) dt = 0.

s=n+1

Then T is an extremal element and

sup IT|%

s=n+1

—Sup{HTZHZ Z)\H]zﬂy—i— Z/ )| Isz(t ‘th<5}
S.
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Proof. Let « € X be an admissible element in (51). Then

— T3 > =lITllZ + D X123, - 67)

j=1

+ Z / |I:E | _5§(t))dt:£(:p7:\\)_s

s=n+1

> L) - S = —T2)% + Y N(ILER, — 62)

Jj=1

+ 3 [ AL - eyan = -3
s=n+1
The same arguments show that 7 is an extremal element in the problem
(52). The proof of the equality £(Z, \) = 0 is the same as in Theorem 2.
Now we have

sup ITall = |1 T35 = L@\ + S = 5.

z€X
Izlly; <6j, j=1,..n
|st(t)|§55(t): tEAs, s=n+1,....p

13. OPTIMAL RECOVERY OF DERIVATIVES FROM FOURIER
TRANSFORMS GIVEN WITH AN ERROR IN THE UNIFORM NORM

Recall that the space F3  is the set of all functions x such that =1

is locally absolute continues on R, 2" € Ly(R), and Fz € L. (R).
Fy . is the set of functions z € Fj  for which ||:L‘( |l omy < 1. Now
we con81der the problem of optimal recovery of z(*), 0 < k: < r, on the
class Fy  from the Fourier transform of x given approxnnately on a
finite interval A, = (—0,0), 0 < ¢ < oo, when the error is measured
in the uniform norm.

Assume that for any z € Fj  we know y € Lo(A,) such that

|Fz(t) —y(t)] <4(t), te,.

Knowing y we have to recover ). We define the error of optimal
recovery by

E? (D" Fy

2,007

5) =

inf sup 2% = m(y)l| oy
m: LOO(AU)HLQ(R) J}EF;’OO, yELOO(AU)
|Fa(t) g0 <5(0), t€A,
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Theorem 14. Letr e N, k € Z,, 0 <k <r,0 <o < o0, 0 €
Loo(A,), 6(t) >0, and

1 a
aO:sup{a:O<a<a,2—/ t2r52(t)dt§1}.
™ —a

If 09 < o0, then

oy 1 [ o
Ego(Dk,F;oo,a):\/%?( ’“)+2—/ (12 — o 2" F2ry62(1) dt
’ T

—00

and the method

(58) m@%:%i[:my(l_(%)”*5yﬁkmd7

s optimal.
If 09 = 0, then

1 oo
EZ (D", F; ., 0) = \/%/ t2k§2(¢) dt

and the method
1 [ .
(59) mm:—/@wwwwf

2 J_
18 optimal.
Proof. In this case the dual problem has the form
2@ 12,0y — max, (2P| L@ <1, [Fa@)]® < 8(1), t € A,
reF; .
The Lagrange function has the form

Lz, A, A2) = = e, @) + MllaI7, @) +/A Ao (t)|Fa(t)]* dt.

o

Passing to Fourier transforms and writing (27) ™| Fz|? = u, we have

L(x, M, \p) = / (=% + Mt + 21 Aq(t)) u(t) dt

AU
+/ (=t + At u(t) dt
R\Ag

by the Plancherel theorem.
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First, let 0g < 00. Let A; = a5 2" " and
/): (t) o (27'(')_1 <t2k — )\1t2r> , ‘t| < 0y,
o(t) =
O, ‘t| Z ag.

Then
L(z, A1, As) = / (=% + oot™) u(t)dt > 0
lt|=o0
for all z € F3 ..
Set

[ A
=1—-— <6 () dt.
gl o). (t)
If v =0, we define = from the condition

5(t), |t
F/[L'\(t) — ( )7 | | < 007
O, ‘t| > agg.
Then L£(Z, A1, A2) = 0,
—~(r 1 70 T
12017, = o 282 (t) dt = 1.

—0o0

Moreover, it is easy to see that

/A o) ([F3()[2 — 62(t)) dt = 0.

It means that conditions (a) and (b) of Theorem 13 are fulfilled.
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Lecture 21

If v > 0 (in this case, it is obvious that oy = o), then we set

) O(D), t] < o,
Falt) = {\/AA(t =), |t >0

where A(t — ty) is the delta function with the unit mass concentrated
at tg, A > 0. In this case L(Z, A, \2) = 0 and
1 [

1
=(r) )12 _ 2r ¢2 2r
172, @) = P t70%(t) dt + —27TA0 :

—0

A=2m0" (1 — i/ 27 6% (1) dt> ,
2 J_,

we obtain that conditions (a) and (b) of Theorem 13 are fulfilled.
To obtain an optimal method of recovery we have to solve the fol-
lowing extremal problem

Taking

/)\\1|’x(r)H%2(R) +/ /XQ(t)\Fx(t) —y(®)|*dt — max, x€ F3 0o

o

Passing to the Fourier transform we get

/ <2>\—71Tt27“|F17(t)|2 —f-/):2(t)|FfL’(t) — y(t)|2> dt — max, I € fg,oo'
Ay

It is easy to obtain the solution of this problem

27 A (1)
Fz,(t) = N\t + 27T/):2(t)
O, |t| Z ag.

Fa 1) = (1 ) (oi>()> y(o), 1t < oo,

O, |t| Z aggp.

y(t)> |t| < Oy,

That is,

Now for the considered case the result of the theorem immediately
follows from Theorem 12.
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If 09 = oo (in this case, obviously, 0 = c0), then it follows from
Lemma 2 that
E7 (D" Fy

2,007

) > sup 12| )
zng,oo
|Fa(t)|<o(t), teR

- 1 [
> (79 a0 = \/ 3 | ewa

where 7 is the inverse Fourier transform of . On the other hand,

eZ (DF, Fy

2,007

§,m) = sup 2% — (y) || Lo
TEF] o, yEL2(R)
|Fa(t)—p()|<5(t), teR

| oo 1/2
= sup (— / k| Fa(t) — y(t)|? dt)
z€F} ., yELa(R) 21 J_ o

|Fa(t)—y(t)|<6(t), teR
1 o
<4|/= t2k62(t) dt
< \/ ol SRR

for the method (59). O
Corollary 3. Let 6(t) =0 > 0 and
G = (r(2r +1))Fm5 70,

Then

262%(r — k)
—2(r—k) 2%+1 ~
\/U T rekr e+’ 0 7S

k

2r+1 1 2T 2(r—k) N
\/ 02T o>0,
2k +1 \7w(2r+1)

and the method (58) with op = min(o,d) is optimal.

E? (D" Fj

2,007

5) =

It follows from this corollary that for a given §, starting from o,
further extension of the interval on which the Fourier transform of a
function from in Fj  is given with error ¢ in the uniform metric does
not result in a decrease in the recovery error. In other words, if the
relation

ot < qm(2r +1)
between the input data and the size of the interval on which the data
is measured is violated, then the available information turns out to be
redundant.
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Lecture 22

From Corollary 2 and Corollary 3 we obtain

Corollary 4.

—k

2r + 1 1 2T
Kp(k,r,2,00,2) = 4/
r(k,72,00,2) =4[ 5;75 (7?(27’—1—1))

Thus, we obtained the exact inequality

r—k
2r + 1 1 2 B () || 3
||$(k)||L2(R) = 2k + 1 (77'(27“ + 1)) ||F$||L2°jﬂ1¥)||x( )”22&)'

14. OPTIMAL RECOVERY OF DERIVATIVES IN R¢

First we recall some facts about the Fourier transform in R?. Let
x € Ly(R?). Then the Fourier transform of the function x is defined as
follows

Fx(r) = /]Rd z(t)e” " dt,

where 7 = (71,...,7q), t = (t1,...,ta), (1,t) = 7ty + ... + T4tq. Tt
follows from the Plancherel theorem that Fz can be considered as a
function from Ly(R?), moreover,

1
l201L, ey = WHF«%H&W)-

The inverse Fourier transform is given by the formula

x(t) = L z(7)e’t™ dr
() = g [, Falr)e'e" ar

For z € Ly(R?) we denote by D% the Weyl derivative of order o which
is defined by

D%x(t) = ﬁ /Rd(iT)o‘Fx(T)ei<T’t> dr,

where
(i1)* = (im)* ... (i1q) .

The Sobolev space H5(R?), r > 1, is the set of functions x € Ly(R?)
such that

1 o ) 1/2
|2l (rey = (W /Rd (1 +[12)1°)" |[Fx(t)] dt) < 00,
where [|t||? = ¢? + ...+ t3. The Sobolev class is the set of functons

Hi(RY) = {z € HHR?) : [|x||lpymay < 1}
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We state the problem on optimal recovery of D%z on the class Hj (RY)
in the Ly(R%)-metric from the information about approximate values
of Fourier transform Fz. Assume that for any € Hj(R?) we know a
function y € Lo(R?) such that

[1Fz = yllpymey < 0.

Knowing y we want to recover D.
We define the error of optimal recovery as follows

Ey(D®, H3(R?), )
— inf sup |1D%c — m(y)]| L,y(ra)-
m: La(R%)—La(RY) zeHy (RY), yeLo(RY)
HFw—yHLQ(Rd)S(S

Any method for which the infimum is attained we call an optimal
method of recovery.
Consider the duality problem

D217, gy — max, ||Fz||?,ga < 67 Hx”i[g(Rd) <1
Passing to Fourier transforms and using the Plancherel theorem, we
may rewrite this problem in the form
(60) |t|?*u(t) dt — max, (27T)d/ u(t) dt < 6%,

R4 Rd

[ a1y utar <, u 2o

where [t|?Y = [£,]?* ... |t4)** and
u= (2m) ¢ Fa|?

There is no existence of extremal function in this problem. Therefore,
we consider the extension of this problem for measures

(61) /R It du(t) — max, - (2n)° /R du(t) < &,
[ 1) dut) < 1.

The Lagrange function for this problem has the form
L(p, A1, Ag) = /d (= Il + 2m) A+ X (1 [12]]%)") dp().
R
Consider the function

G(t) = —|t]* + (2m)"\ + Ao (L + [|t]1?)".



74

First, we suppose that a; > 0. For [t/ > 0 we put & = 2In|t;,
7=1,...,d. Then
G(t) = e F(g),
where & = (§1,...,&4) and
F&)=—1+e @9 (2m)" N\ + X (1 + e + ... +€%)").

We show that F'is a convex function for all A1, Ay > 0. The function
F may be represented as follows

F(€) = =1+ (2m)" A1 f () + Aag" (8),

where



Lecture 23

We have

d 2
(€)= r(r ~ )5 (6) (Z 91,.))

M&

J:0

Consequently, d*F(£) > 0. Tt means that F is convex.
Define £ = (1, ..., &) from the condition

et =caj, j=1,...,d,
where ¢ > 0 will be defined later, and find Xl, Xg such that
(62) F(€)=0, dF(€)=0.
Set

d d

aj

o= 0y, p=][o
Jj=1 Jj=1

Then
d ~
elnd) — H(ef)o‘f = pc°.
j=1
Consequently;,
~ 1
F¢)=-1+ ]—Dcf" ((2m) A1 + Aa(L 4 o)) .

We have

a_F — —e_<°"g>oz- ((271-)61/\ + A1+ o r—1

= 5 1+ Ao co)" —crds(l+co) ).
afj §=¢

To satisfy (62) we obtain the following equalities
(2m)A; 4+ Ao (1 + co)” = pe?,
(27T)d/)\\1 + :\\2(1 +co) = cr:\\g(l +co) !
Assume that o < r and

(63) c>

r—o

P (b;, )2 >0, d’f(€) =e N a,€)* >0

75
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Then
o—1
A\ = (QW)dT(C(T —0)—1)>0,
(64) ol
pc

>)

= ——>0.
2T r(1l+co)t

Conditions (62) together with convexity of F yield that F'(£) > 0 for
all £ € R%. Consequently, G(t) > 0 for all t € R? and G(7) = 0, where
T=(T1,..-,7a),

7=, j=1,....d
fa;>0,7eQC{l,....,d}and o; =0, j € Q\ {1,...,d}, then the
similar arguments show that for the function

G(t) = —[t]* + (2m) A1 + Ao (1 + Zt?)
jeQ
G(7) =0and G(t) > 0 for all £ € R?. But in this case G(t) > G(t) > 0
for all t € R? and G(7) = G(7) = 0.
Put dp(t) = Ad(t —7), where §(t) is the delta function at the origin.
Then

min £(dp, A\, Aa) = L(dfi, M\, o).

dpu>0

Define A from the conditions

e [ i =, [ (1) aie =1

We have
2m)?A =06 A(1+|7?) =1
Hence
1
A=A% == (A" -1),
o
where
1)
A = .
(27)4/2

From (63) we obtain that

r/2
§ < (2m)20y, Ay = (1 - 5) .
T

If § > (2m)%2 Ay, we put
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Then
) [ date) = (2my'a < 2
]Rd

which means that dfi(t) is an admissible measure. Note that in this

case A\; = 0.
To find an optimal method of recovery consider the extremal problem

Ml Fz = yl7, e + Aellzligyge — min, 2 € H3(RY).

Passing to the Fourier transform we have

~

/. (Xnmu) ~u(OF + (1 ||t||2>r|Fx<t>|2) dt — win,

x € HH(RY).
It can be easily obtained that the solution of this problem has the form

(2m)4n

Fux,(t) = — o~
o) (2m) DAy + Ao (1 + [[]|2)r

y(t).

If § < (27)%2A, then

/):2 B 1 B A272/r
(27T)d/):1 - (I+co)yYe(r—o)=1) =0 (A2 —1) —1
B A? i B o A?
O Taur r(AYT— AT
o o

Thus for § < (27)%2A, the method

N 1 (iT)%y(T)e!
©) ) = g [ : dr

A
1+ ——r (1+|2)"
r(Ay " — A7)
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is optimal and the error of optimal recovery can be calculated as follows

Eo(D*, Hy(RY), §) = \/ A6 + As
- \/pc;—l <A2(c(r —o)—1)+ W)

—2/r _ 1)o—1 _
_ \/p(A 11) (AQ (T U(A_2/r o 1) o 1) + AQ—?/T)
ro’- o

\/Z_) Al—a/r (1 . A2/r>‘7/2 ]

oo/2

For § > (27)%2Ay, taking into account that A =0andc= (r—o)1,
we obtain that

E>(D*, H5(R%),6) = \/ Ao = @(r —g)r=)/2

/2

and the method m(y) = 0 is optimal.
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Lecture 24

We proved the following theorem.

Theorem 15. Let a = (aq,...,aq) ERL, a#0,r > 1 and o <r. If
0< 6§ < (2m)¥2A,, then
Ey(D°, Hy(RY), 6) = YD A1/ (1 — p2/7)"/*
oo/2
and the method (65) is optimal. If 6 > (2m)¥2A,, then
Eo(D®, Hy(RY),8) = YL (5 — )12
rr
and the method m(y) = 0 is optimal.
Now we assume that the Fourier transform of x € H3(R?) is known

with an error on some measurable set  C R? Then we define the
error of optimal recovery by

EQ(Daa Hg(Rd>7 57 Q)

= inf sup ||DO‘IE - m(y)HLz(Rd)-
m: L2(Q)—L2(R?) zeHL(RY), yeL2(R)
IFz—yll Ly <o

It is easy to verify that for if €2y C 9, then
Ey(D", Hy(RY),5,0) > Ey(D", H5(RY), 5,0).

It appears that there exists a set 25 C R? such that for all measurable

sets Q, Qs € Q C R?, the equality
Ey(D, Hy(R"),6,0) = Eo(D?, Hy(R?), )

holds. In other words, any information about the Fourier transform
obtained with the same error outside the set €25 does not lead to de-
creasing of the error of optimal recovery. Since for § > (2m)%2A, we
do not use any information (optimal method of recovery is m(y) = 0)
for such 6, Q5= 0.

The precise result can be formulated as follows.

Theorem 16. With the same conditions as in Theorem 15 for § <
(2m)¥2 Ay put

Q; = {t cRY- |t‘2a > p (1 o A2/r)0*1 A2-0/7) }
(L2~ root
Then for all measurable sets Q such that Q5 C Q2 C R?
Ey(D*, Hy(RY),6,Q) = Ey(D*, Hy(RY), ),
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and the method

iT) %y (1)elmt
S ()30 .

A
et — (1+ )"

s optimal.
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Lecture 25

Proof. The scheme of the proof is the same as in the previous theorem.
We consider the dual extremal problem. Then pass to the Fourier trans-
form and consider the Lagrange function for the extensional extremal
problem

L0 3, R) = /

R4

(=1t + @m)Baxa(®) +Xa (1 + 1)) du(t),
where A; and A, are defined by (64). It was proved that for all t € R?
—Jt[2 + (2m) A+ Ag (1 +[[E]2)" > 0.

If t ¢ Q, then t ¢ Q5. Consequently,
[t p
(4[>~ roo!

It means that

(1 i AQ/T)U_l A2(1—J/7‘) _ /A\Q.

—[tPP 4+ X (14 [ > 0.
Since
72+ 2r) N+ e (1+ 7)) =0
we have
7P 2 (1+ 7)) = —(21)"\ < 0.
Hence 7 € Q5. Then the proof proceed exactly in the same way as in
the previous theorem. O

Consider the following example. Let d =2, r =4, and a = (1,1). In
other words, we consider the problem of optimal recovery of z , on the
class Hy(R?). Tt follows from Theorems 15 and 16 that for 0 < § < 7/2

B0, (B, ) = o 0 (1 - \@) ,

Qs is the set of points (psin ¢, pcos @) such that

~1/4
) 1)
1+ < | —[1—4/= /| sin 2
and the method
: / —717y(71, o) €' (M1 TT2E)
Q

m(y) = 2 -
(2m)* 0 5) "

dTl dTQ

is optimal.
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15. OPTIMAL RECOVERY OF VALUES OF DERIVATIVES AND
STECHKIN’S PROBLEM

We consider optimal recovery problem of z*)(7) where 0 < k < 7,

7 € R, on the class Fy, by the information about the Fourier transform

Fx given on the interval A, = (—0,0), 0 < ¢ < oo, with the error

d > 0 in the metric L,(A,). That is, we would like to find the error of
optimal recovery

EJ (D%, Fy

5p00) = inf sup  [a™(7) —m(y)|

m: Lp(Ag)—R z€F] |, y€Lp(As)
IFz—yllL,(a,) <0
and an optimal method of recovery.
We also study the problem of best approximation of z*)(7), 0 <
k <r, 7 €R, on the class Fy, by the information about the Fourier
transform Fx given on the interval A, by means of linear continu-
ous functionals on L,(A,) with the norm not greater than some fixed
positive number N. It is in finding the value
(66) Sg(Df, Fy,, N)=inf sup |x(k)(7') —(y*, Fz)|
y* zeFy,
(where the lower bound is taken over all linear functionals y* on L,(A,)
such that ||y*|| < N), and also a functional g* delivering the lower
bound in (66) which is called eztremal.
If we put x in (66) instead of F'x then we obtain the classical problem
of S. B. Stechkin, so (66) we also call the problem of Stechkin.
In view of the translation invariance of the classes under considera-
tion throughout what follows we assume that 7 = 0.
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Lecture 26

Theorem 17. Letr e N, k€ Z,, 0<k<r, 0 <o <00, >0,
1 <p < oo, and for all x € Fy, the equality

(67) 28 (0) = (7", Fx) + X / ()20 (t) dt

R
holds, where y* is some linear continuous functional on L,(A,), A €
R, and T € F3, satisfies the following conditions

(@) 1FZ] 2,0, =9,
(f{?) HZET)H@(R) = L,k
(4ii) (y*, Fz) = d||y*].
Then
(68) EJ(D}, Fy

2,p>

§)=sup [a™(0)] = X+0|7
xeF{yP,
1F2l L, (a0) <0

and y* is an optimal method of recovery. Moreover, for Stechkin’s prob-
lem for N = ||y*||
SI(D§, Fy . N) =\

2,p?
and y* is an extremal functional.

Proof. Tt follows from (67) that for all z € F3
[0 (0) = (", Fa)| < Mla® | o 127 [ oy < X
Thus,

(69) EJ(D§, Fy,,6) < sup 12(0) — (7", y)|
Tz€FY , y€Lp(As)

IFz=yllL,(ar)<0
< sup  (|2M(0) = (7, Fa)| + (7", Fr — y)|)
2€Fy . yeLp(Ao)
IFz—yllL,an.)<o
< sup [20(0) = (F, Fx)| + 0[7°[| = A + 817

xEFQT’p
On the other hand, using the general result about the lower bound (see
Lemma 2) and taking (i¢) and (#ii) into account we have

E;(D’g, Fr

5 0) > sup [a®(0)] > [70(0)]

zGFQT’p,
1FzllL,a0)<0

= (7", F2) + M2 || o | = X+ 3177
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It follows from this inequality and (69) equality (68) and the optimality
of the method y*.

We now proceed to the Stechkin problem. As was proved, there
exists an optimal method of recovery defined by a linear continuous
functional, therefore

§) = inf inf sup  [«M(0) — (v, )]
N>0 |ly*||<N zely ,, yeLp(Ao)
IFz=yllL,(a,)<0

< inf sup  (|2®(0) — (y*, Fa)| + (y*, Fx — y)|)

ly*[I<N z€Fy ,, yeLp(As)
IFz=yllL,(a,)<o

< inf sup [z®™(0) — (y*, Fz)| + 6N = S5(DE, Fy

2,p’
ly*lI<N z€F3,

EJ(Dg, Fy

2,p)

N) + 6N.

Consequently, for all N > 0
(70) So(DE, Fy

2,p?

N) > EZ(D§, Fy

2,p)

J) —IN.
Hence from (68) for N = ||y*|| we obtain
So(DE Fy  N) > A

2,p?
On the other hand, in view of (67) we have

S7(DE Ffy N) < sup [190) — (77, Fa) [ =\
zeky

U

In view of the translation invariance of the space F3 , it follows from
Corollary 2 and (68) the following result.

Corollary 5. Assume that the conditions of Theorem 17 are fulfilled
for o = oco. Then

Kr(k,r,00,p,2) = X+ ||y
Corollary 5 states that if the conditions of Theorem 17 are fulfilled

for 0 = 0o, then the exact inequality for derivatives has the following
form

r—k—1/2 k+1/p’
(71)  N2eree < O+ Iy IDIFl @ 1l g,



Lecture 27

We start with the case when p = oco.

Theorem 18. Let 0 >0, k,r € Z, 0 <k <r,0< o < o0,

. (71'(27" ;;)((;:_-:)k — 1)) T |

and oy = min(o,0). Then

k+1

o ) 1 T 02
E° (DF Fr_ . §) =Y - —

ool Do, F5.00:0) = = <k+1+\/2r—2k—1(ag’"+1 27"+1)

and the method

Al =5 [ (= N (o),
lt|<oo
where
- 0,62r+k ( T 52 )—1/2
V2r =2k —1 \og"t"  2r+1 ’
18 optimal.

Proof. Let us prove that for all z € F3  the equality

(72) x(k)(0)2%4< (it)* (1 — SN[t ) Fa(t) dt

+ A / 2 ()0 () dt
R
holds, where the function 7 € F3  is such that

(—i)kdsignt®,  |t| < oy,

(=)

\t r—k’

Fa(t) =

|t| Z oyp.-

By the Plancherel theorem we have

R 1 —
/:zc(” (t)z")(t) dt = — / t*" Fao(t) F(t) dt.
R 2 R
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Therefore,
1 —_—
|Gt (1= oA ) Fa(t) de + X / ) (0O dt
[t|<oo R
1
=5 ' ((it)% (1 = SA[t* %) + M*i*d sign ™) Fa(t) dt
t|<oo
1 1
o it Fa(t)dt = — [ (it)*Fa(t)dt = 29(0).
+ 2T It\Zoo(Z) (t) o /R(Z) x(t) =" (0)

The equality ||Z"z,®) = 1 is easily verified. Let us prove that
| FZ||1o(a,) = 6. For 09 > o it is immediately follows from the defini-
tion of F'Z. Let g < 0. Then o9 = ¢ and it is not difficult to verify
that (\o?=¥)~1 = §. Thus, |FZ(t)| < J for |[t| > 7. We now verify the
fulfilment of the condition (éi7) of Theorem 7. We have
(73) (y*, F7) = i/ [t (1= SA|L> ) dt.

27 J i<

7

Let us prove that 1—3d\[t[* % > 0 for |t| < 0¢. In view of the definition
of g we have

5203T+12(2T —k) < 5232T+12(2r —k)=m(2r+1)(2r—2k—-1).
Hence
5203r+1(2T +1) < (2r—2k—-1)(r(2r+1) — (5203”1)
= og XL (2 + 1A,

that is, 6Aca" % < 1. Thus, for [t| < o9, 1=A[t|>" % > 1—6 a2 > 0.
Consequently, the right-hand side of (73) is equal to 6||y*||. To complete
the proof it remains to apply Theorem 7. U

It follows by Theorem 18 that for o > &

E(DE, Fy.,6) = K& 7
where
(74) o (T+1/2)2kr7111 2r — k e
k1 m(2r — 2k — 1) '

Thus in the problem under consideration the “saturation” effect of the
optimal recovery error is occurred which is in the fact that for a fixed
0 > 0 the knowledge of the Fourier transform of a function from Fj
given with the error ¢ in the uniform metric on the intervals larger than



87

(—o,0) does not result in a decrease in the optimal recovery error. Thus
the violation of the relation
m(2r+1)(2r — 2k —1)

2(2r — k)
leads to the fact that the available information turns out to be redun-
dant. This fact is apparently important in practical applications when
we have to take into account that obtaining the additional information

requires some expense.
It follows from (71)

520_27“-1—1 S

Corollary 6. Let k,r € Z and 0 < k < r. Then we have the exact
inmequality

(k) % (r) %
125 | ey < K| F2|l, 25 2]

where the constant K is defined by the equation (74).



