Лекция 13.

Замена переменной и интегрирование по частям в определенном интеграле. Применение определенного интеграла к вычислению площадей плоских фигур.

Теорема 13.1. Если:

- 1) функция f(x) непрерывна на отрезке [a,b],
- 2) функция $\varphi(t)$ непрерывна и имеет непрерывную производную $\varphi'(t)$ на отрезке $[\alpha, \beta]$, где $a = \varphi(\alpha), b = \varphi(\beta)$,
- 3) функция $f(\varphi(t))$ определена и непрерывна на отрезке $[\alpha,\beta]$,

To
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(j(t))j'(t)dt.$$
 (13.1)

Доказательство.

Если F(x) – первообразная для f(x), то $\int f(x)dx = F(x) + C$,

 $\int f(\boldsymbol{j}(t))\boldsymbol{j}'(t)dt = F(\boldsymbol{j}(t)) + C$ (см. теорему 6.2). Тогда, используя формулу Ньютона

– Лейбница, получим:
$$\int_a^b f(x)dx = F(x) \bigg|_a^b = F(b) - F(a),$$

$$\int\limits_{a}^{b}f(j(t))j'(t)dt=F(j(t)\bigg|_{a}^{b}=F(j(b))-F(j(a))=F(b)-F(a)\ ,\ \text{откуда следует}$$

справедливость формулы (13.1).

Замечание. В отличие от неопределенного интеграла, в определенном интеграле нет необходимости возвращаться к прежней переменной интегрирования, так как результатом вычисления будет число, не зависящее от выбора переменной.

Пример

Вычислить интеграл $\int_{3}^{8} \frac{x-3}{\sqrt{x+1}} dx$. Сделаем замену: $t = \sqrt{x+1}$, откуда $x = t^2 - 1$, x' = 2t.

При этом
$$a = \sqrt{3+1} = 2$$
, $b = \sqrt{8+1} = 3$. Тогда $\int_{3}^{8} \frac{x-3}{\sqrt{x+1}} dx = \int_{2}^{3} \frac{(t^2-4)2t}{t} dt =$

$$=2\int_{2}^{3}(t^{2}-4)dt = \left(\frac{2}{3}t^{3}-8t\right)_{2}^{3} = -6+\frac{32}{3}=\frac{14}{3}.$$

Теорема 13.2. Если функции u(x) и v(x) непрерывны вместе со своими производными на отрезке [a,b], то

$$\int_{a}^{b} u dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v du. \tag{13.2}$$

(Формула (13.2) называется формулой интегрирования по частям для определенного интеграла).

Доказательство.

 $\int_{a}^{b} (uv)' dx = \int_{a}^{b} (uv' + u'v) dx = \int_{a}^{b} u dv + \int_{a}^{b} v du$. Все интегралы в этом равенстве существуют, так как подынтегральные функции непрерывны. При этом $\int_{a}^{b} (uv)' dx = uv \bigg|_{a}^{b},$ поэтому $uv \bigg|_{a}^{b} = \int_{a}^{b} u dv + \int_{a}^{b} v du$, откуда следует (13.2).

Примеры.

1. Вычислить интеграл $\int_{1}^{2} xe^{x}dx$. Пусть u=x, $dv=e^{x}dx$. Тогда du=dx, $v=e^{x}$. Применим формулу (13.2):

$$\int_{1}^{2} x de^{x} = xe^{x} \Big|_{1}^{2} - \int_{1}^{2} e^{x} dx = 2e^{2} - e - e^{x} \Big|_{1}^{2} = 2e^{2} - e - e^{2} + e = e^{2}.$$

2. $\int_{0}^{\frac{1}{2}} \arcsin x dx = x \arcsin x \Big|_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} x d \arcsin x = \frac{p}{12} - \int_{0}^{\frac{1}{2}} \frac{x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x dx}{\sqrt{1 - x^{2}}} = \frac{p}{12} + \frac{p}{12$

$$=\frac{\pmb{p}}{12}+\frac{1}{2}\int\limits_{0}^{\frac{1}{2}}(1-x^2)^{-\frac{1}{2}}d(1-x^2)=\frac{\pmb{p}}{12}+\frac{1}{2}\cdot2\sqrt{1-x^2}\left|_{0}^{\frac{1}{2}}=\frac{\pmb{p}+\sqrt{3}-2}{2}\right.$$
 (При интегрировании принималось $u=x,\ v=\arcsin x$).

3. Вычислить $\int\limits_0^p e^x \sin x dx$. Пусть $u=e^x$, $dv=\sin x dx$. Тогда $du=e^x dx$, $v=-\cos x$.

Следовательно,
$$\int_{0}^{p} e^{x} \sin x dx = -e^{x} \cos x \Big|_{0}^{p} + \int_{0}^{p} \cos x \cdot e^{x} dx = e^{p} + 1 + \int_{0}^{p} \cos x \cdot e^{x} dx$$
.

Применим к интегралу в правой части полученного равенства еще раз формулу интегрирования по частям, положив $u = e^x$, $dv = \cos x dx$: $\int_0^p e^x \sin x dx =$

$$= e^{p} + 1 + e^{x} \sin x \Big|_{0}^{p} - \int_{0}^{p} \sin x \cdot e^{x} dx = e^{p} + 1 + 0 - 0 - \int_{0}^{p} e^{x} \sin x dx = e^{p} + 1 - \int_{0}^{p} e^{x} \sin x dx.$$

Поскольку при этом в правой части равенства стоит такой же интеграл, как в левой, его значение можно найти из уравнения: $2\int\limits_{0}^{p}e^{x}\sin xdx=e^{\pi}+1$, то есть

$$\int_{0}^{p} e^{x} \sin x dx = \frac{1}{2} (e^{p} + 1).$$

Геометрические приложения определенного интеграла.

1. Вычисление площадей плоских фигур.

Вспомним, каким образом вводилось понятие определенного интеграла. С геометрической точки зрения интегральная сумма представляет собой (при $f(x) \ge 0$) сумму площадей прямоугольников с основанием Δx_i и высотой $f(x_i)$. Переходя к пределу при $|\tau| \to 0$,

получаем, что $\int_a^b f(x)dx$ при $f(x) \ge 0$ представляет собой площадь так называемой

криволинейной трапеции aA_1B_1b , то есть фигуры, ограниченной частью графика функции

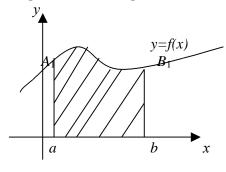


Рис. 1

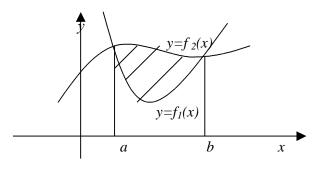


Рис. 2

f(x) от x = a до x = b и отрезками прямых x = a, x = b и y = 0 (рис. 1):

$$S = \int_{a}^{b} f(x)dx. \tag{13.3}$$

Если требуется найти площадь фигуры, ограниченной графиками двух функций: $f_1(x)$ и $f_2(x)$ (рис. 2), то ее можно рассматривать как разность площадей двух криволинейных трапеций: верхней границей первой из них служит график функции $f_2(x)$, а второй $-f_1(x)$.

Таким образом,
$$S = \int_{a}^{b} f_2(x)dx - \int_{a}^{b} f_1(x)dx = \int_{a}^{b} (f_2(x) - f_1(x))dx$$
. (13.4)

Замечание 1. Формула (13.4) справедлива, если графики функций $f_1(x)$ и $f_2(x)$ не пересекаются при a < x < b.

Замечание 2. Функции $f_1(x)$ и $f_2(x)$ могут при этом принимать на интервале [a,b] значения любого знака.

Пример.

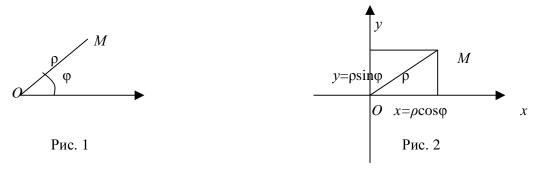
Найти площадь фигуры, ограниченной графиками функций $y = x^2 - 3x - 5$ и y = x - 5. Найдем абсциссы точек пересечения указанных графиков, то есть корни уравнения $x^2 - 3x - 5 = x - 5$. $x^2 - 4x = 0$, $x_1 = a = 0$, $x_2 = b = 4$. Таким образом, найдены пределы интегрирования. Так как на интервале [0,4] прямая y = x - 5 проходит выше параболы $y = x^2 - 3x - 5$, формула (13.4) примет вид:

$$S = \int_{0}^{4} (x - 5 - (x^{2} - 3x - 5)) dx = \int_{0}^{4} (4x - x^{2}) dx = 2x^{2} - \frac{x^{3}}{3} \Big|_{0}^{4} = 32 - \frac{64}{3} = \frac{32}{3}.$$

Лекция 14.

Площадь в полярных координатах. Длина дуги кривой и ее вычисление. Вычисление объемов тел.

Введем на плоскости криволинейную систему координат, называемую полярной. Она состоит из точки О (полюса) и выходящего из него луча (полярной оси).



Координатами точки M в этой системе (рис. 1) будут длина отрезка MO – полярный радиус ρ и угол ϕ между MO и полярной осью: $M(\rho,\phi)$. Отметим, что для всех точек плоскости, кроме полюса, $\rho > 0$, а полярный угол ϕ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

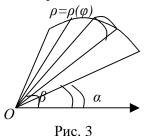
Замечание. Если ограничить значения ϕ интервалом $[0,\pi]$ или $[-\pi,\pi]$, то каждой точке плоскости соответствует единственная пара координат (ρ,ϕ) . В других случаях можно считать, что ϕ может принимать любые значения, то есть полярный угол определяется с точностью до слагаемого, кратного 2π .

Связь между полярными и декартовыми координатами точки M можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось

$$Ox$$
 – с полярной осью (рис. 2). Тогда $x = \rho \cos \varphi$, $y = \rho \sin \varphi$. Отсюда $r = \sqrt{x^2 + y^2}$, $tg j = \frac{y}{x}$.

Выясним, как с помощью определенного интеграла вычислить площадь фигуры, границы которой заданы в полярных координатах.

а) Площадь криволинейного сектора.



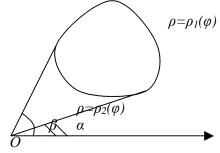


Рис. 4

Найдем площадь фигуры, ограниченной частью графика функции $\rho = \rho(\varphi)$ и отрезками лучей $\varphi = \alpha$ и $\varphi = \beta$. Для этого разобьем ее на n частей лучами $\varphi = \varphi_i$ и найдем сумму площадей круговых секторов, радиусами которых служат $\mathbf{r}_i = \mathbf{r}(\mathbf{j}_i^-)$, где $\mathbf{j}_{i-1} < \mathbf{j}_i^- < \mathbf{j}_i^-$

Как известно, площадь сектора вычисляется по формуле $S = \frac{1}{2}r^2a$, где r – радиус сектора, а α – его центральный угол. Следовательно, для суммы площадей рассматриваемых

секторов можно составить интегральную сумму $\frac{1}{2}\sum_{i=1}^{n}r_{i}^{2}\Delta\boldsymbol{j}_{i}$, где $\Delta\boldsymbol{j}_{i}=\boldsymbol{j}_{i}-\boldsymbol{j}_{i-1}$. В

пределе при $\max \Delta \pmb{j}_{_i} \to 0\,$ получим, что площадь криволинейного сектора

$$S = \frac{1}{2} \int_{a}^{b} r^2 dj . {14.1}$$

б) Площадь замкнутой области.

Если рассмотреть замкнутую область на плоскости, ограниченную кривыми, уравнения которых заданы в полярных координатах в виде $r = r_1(j)$ и $r = r_2(j)$ ($r_1(j) \le r_2(j)$), а

полярный угол ϕ принимает для точек внутри области значения в пределах от α до β (рис. 4), то ее площадь можно вычислять как разность площадей криволинейных секторов, ограниченных кривыми $r = r_1(j)$ и $r = r_2(j)$, то есть

$$S = \frac{1}{2} \int_{a}^{b} (r_2^2 - r_1^2) dj \quad . \tag{14.2}$$

Пример.

Вычислим площадь области, заключенной между дугой окружности $x^2+y^2=1$ и прямой $x=\frac{1}{2}$ при $\frac{1}{2} \le x \le 1$. В точках пересечения прямой и окружности $x=\frac{1}{2}, y=\pm\frac{1}{2}$, то есть полярный угол ϕ изменяется внутри области в пределах от $-\frac{p}{4}$ до $\frac{p}{4}$. Уравнение окружности в полярных координатах имеет вид $\rho=1$, уравнение прямой - $r\cos j=\frac{1}{2}$, то есть $r=\frac{1}{2\cos j}$. Следовательно, площадь рассматриваемой области можно найти по формуле (14.2):

$$S = \frac{1}{2} \int_{-\frac{p}{4}}^{\frac{p}{4}} \left(1 - \frac{1}{4\cos^2 j} \right) dj = \frac{1}{2} j - \frac{1}{8} tgj \Big|_{-\frac{p}{4}}^{\frac{p}{4}} = \frac{p-1}{4}.$$

- 2. Длина дуги кривой.
- а) Длина дуги в декартовых координатах.

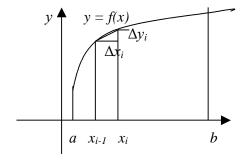


Рис. 5

Рассмотрим функцию y = f(x), непрерывную на отрезке [a,b] вместе со своей производной. Выберем разбиение τ отрезка [a,b] и будем считать длиной дуги кривой, являющейся графиком f(x), от x=a до x=b предел при $|\tau| \rightarrow 0$ длины ломаной, проведенной через точки графика с абсциссами x_0 , x_1 ,..., x_n (точками разбиения τ) при стремлении длины ее наибольшего звена к нулю:

$$l = \lim_{\max \Delta l_i \to 0} \sum_{i=1}^n \Delta l_i . \tag{14.3}$$

Убедимся, что при поставленных условиях этот предел существует. Пусть

$$\Delta y_i = f(x_i) - f(x_{i-1})$$
. Тогда $\Delta l_i = \sqrt{\left(\Delta x_i\right)^2 + \left(\Delta y_i\right)^2} = \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \Delta x_i$ (рис. 5). По формуле

конечных приращений Лагранжа $\frac{\Delta y_i}{\Delta x_i} = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = f'(\mathbf{x}_i)$, где $x_{i-1} < \xi_i < x_i$. Поэтому

$$\Delta l_i = \sqrt{1+\left(f'(\pmb{x}_i)\right)^2} \Delta x_i$$
 , а длина ломаной $l_n = \sum_{i=1}^n \sqrt{1+\left(f(\pmb{x}_i)\right)^2} \Delta x_i$. Из непрерывности $f(x)$ и

f'(x) следует и непрерывность функции $\sqrt{1+(f'(x))^2}$, следовательно, существует и предел интегральной суммы, являющейся длиной ломаной, который равен

$$l = \lim_{\max \Delta x_i o 0} \sum_{i=1}^n \sqrt{1 + (f'(\mathbf{x}_i))^2} \, \Delta x_i = \int\limits_a^b \sqrt{1 + (f'(x))^2} \, dx$$
 . Таким образом, получена формула

для вычисления длины дуги:

$$l = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx.$$
 (14.4)

Пример.

Найти длину дуги кривой $y = \ln x$ от $x = \sqrt{3}$ до $x = \sqrt{15}$.

$$l = \int_{\sqrt{3}}^{\sqrt{15}} \sqrt{1 + ((\ln x)')^2} dx = \int_{\sqrt{3}}^{\sqrt{15}} \sqrt{1 + \frac{1}{x^2}} dx = \int_{\sqrt{3}}^{\sqrt{15}} \frac{\sqrt{1 + x^2}}{x} dx = \int_{\sqrt{3}}^{\sqrt{15}} \frac{x^2 + 1}{x^2} \cdot \frac{x dx}{\sqrt{x^2 + 1}}$$
. Сделаем замену:

 $u = \sqrt{x^2 + 1}$, тогда $x^2 = u^2 - 1$, $du = \frac{xdx}{\sqrt{x^2 + 1}}$, а пределами интегрирования для u будут u = 2

(при
$$x = \sqrt{3}$$
) и $u = 4$ (при $x = \sqrt{15}$). Получим: $l = \int_2^4 \frac{u^2}{u^2 - 1} du = \frac{1}{2} \int_2^4 \left(2 + \frac{1}{u - 1} - \frac{1}{u + 1}\right) du = \frac{1}{2} \int_2^4 \left(2 + \frac{1}{u - 1} - \frac{1}{u + 1}\right) du = \frac{1}{2} \int_2^4 \left(2 + \frac{1}{u - 1} - \frac{1}{u + 1}\right) du = \frac{1}{2} \int_2^4 \left(2 + \frac{1}{u - 1} - \frac{1}{u + 1}\right) du$

$$= \frac{1}{2} \left(2u + \ln \frac{u-1}{u+1} \right)_{2}^{4} = 2 + \frac{1}{2} \ln \frac{9}{5}.$$

б) Длина дуги кривой, заданной в параметрической форме.

Если уравнения кривой заданы в виде $\begin{cases} x = j \ (t) \\ y = y(t) \end{cases}$, где $a \le t \le b$, а $\varphi(t)$ и $\psi(t)$ – непрерывные

функции с непрерывными производными, причем $\varphi'(t) \neq 0$ на $[\alpha, \beta]$, то эти уравнения определяют непрерывную функцию y = f(x), имеющую непрерывную производную

$$\frac{dy}{dx} = \frac{y'(t)}{j'(t)}.$$
 Если $a = j(a), b = j(b),$ то из (14.4) $l = \int_{a}^{b} \sqrt{1 + \left(\frac{y'(t)}{j'(t)}\right)^2} j'(t) dt,$ или
$$l = \int_{a}^{b} \sqrt{(j'(t))^2 + (y'(t))^2} dt.$$
 (14.5)

Замечание. Если пространственная линия задана параметрическими уравнениями

$$\begin{cases} x = j(t) \\ y = y(t), \text{ то при указанных ранее условиях} \end{cases} l = \int_{a}^{b} \sqrt{(j'(t))^{2} + (y'(t))^{2} + (c'(t))^{2}} dt. \quad (14.6)$$
 $z = c(t)$

в) Длина дуги в полярных координатах.

Если уравнение кривой задано в полярных координатах в виде $\rho = f(\varphi)$, то $x = \rho \cos \varphi = f(\varphi)\cos \varphi$, $y = \rho \sin \varphi = f(\varphi)\sin \varphi$ — параметрические уравнения относительно параметра φ . Тогда для вычисления длины дуги можно использовать формулу (14.5), вычислив предварительно производные x и y по φ :

$$\frac{dx}{dj} = f'(j)\cos j - f(j)\sin j, \frac{dy}{dj} = f'(j)\sin j + f(j)\cos j.$$
 Следовательно,
$$\left(\frac{dx}{dj}\right)^2 + \left(\frac{dy}{dj}\right)^2 = \left(f'(j)\right)^2 + \left(f(j)\right)^2 = r'^2 + r^2, \text{ поэтому}$$

$$l = \int_{j_1}^{j_2} \sqrt{\mathbf{r}'^2 + \mathbf{r}^2} \, dj \,. \tag{14.7}$$

Пример.

Найти длину дуги спирали Архимеда $ho=\varphi$ от $\varphi=0$ до $\varphi=2\pi$.

$$\begin{split} &l = \int\limits_0^{2p} \sqrt{j^2 + 1} dj = \int\limits_0^{arctg\,2p} \frac{1}{\cos t} \cdot \frac{dt}{\cos^2 t} = \int\limits_0^{arctg\,2p} \frac{\cos t dt}{\cos^4 t} = \int\limits_0^{arctg\,2p} \frac{d\sin t}{(1 - \sin t)^2 (1 + \sin t)^2} = \\ &= \int\limits_0^{\frac{2p}{\sqrt{1 + 4p^2}}} \frac{du}{(1 - u)^2 (1 + u)^2} = \frac{1}{4} \int\limits_0^{\frac{2p}{\sqrt{1 + 4p^2}}} \left(\frac{1}{1 + u} + \frac{1}{(1 + u)^2} + \frac{1}{1 - u} + \frac{1}{(1 - u)^2} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} + \frac{1}{1 - u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{1 + u} \right) du = \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1 + u}{1 - u} \right| - \frac{1}{4} \left(\ln \left| \frac{1$$

3. Вычисление объемов тел.

Пусть имеется некоторое тело, для которого известна площадь любого его сечения плоскостью, перпендикулярной оси Ox, являющаяся функцией от x: Q = Q(x). Определим объем рассматриваемого тела в предположении, что Q — непрерывная функция. Если значение x внутри тела меняется от a до b, то можно разбить тело на слои плоскостями $x = x_0 = a$, $x = x_1$, $x = x_2$, ..., $x = x_n = b$. Затем выберем в каждом слое значение $x = \xi_i$, $x_{i-1} \le \xi_i \le x_i$, и рассмотрим сумму объемов цилиндров с площадями оснований $Q(\xi_i)$ и

высотами $\Delta x_i = x_i - x_{i-1}$. Эта сумма будет равна $v_n = \sum_{i=1}^n Q(x_i) \Delta x_i$. Получена интегральная

сумма для непрерывной функции Q(x) на отрезке [a,b], следовательно, для нее существует предел при $|\tau| \to 0$, который равен определенному интегралу

$$v = \int_{a}^{b} Q(x)dx, \qquad (14.8)$$

называемому объемом данного тела.

Замечание. Если требуется определить объем так называемого **тела вращения**, то есть тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной частью графика функции y = f(x) от x = a до x = b и отрезками прямых x = a, x = b и y = 0, то площадь сечения такого тела плоскостью x = const равна $py^2 = p(f(x))^2$, и формула (14.8) в этом случае имеет вид:

$$v = p \int_{a}^{b} y^{2} dx = p \int_{a}^{b} (f(x))^{2} dx .$$
 (14.9)

Пример.

Найдем объем эллипсоида вращения $\frac{x^2}{4} + y^2 + z^2 = 1$. При x = const сечениями будут круги $y^2 + z^2 = 1 - \frac{x^2}{4}$ с радиусом $R = \sqrt{1 - \frac{x^2}{4}}$ и площадью $Q(x) = p \left(1 - \frac{x^2}{4}\right)$. Применим

формулу (14.8), учитывая, что x изменяется от -2 до 2:

$$v = p \int_{-2}^{2} \left(1 - \frac{x^2}{4}\right) dx = p \left(x - \frac{1}{12}x^3\right) = \frac{8p}{3}.$$

4. Площадь поверхности тела вращения.

Пусть требуется определить площадь поверхности, полученной вращением кривой y = f(x) вокруг оси Ox при $a \le x \le b$. Выберем разбиение τ отрезка [a,b] и рассмотрим, как и при определении длины кривой, ломаную, проходящую через точки кривой с абсциссами x_i . Каждый отрезок такой ломаной при вращении опишет усеченный конус, площадь боковой

поверхности которого равна
$$\Delta S_i = 2p \frac{y_{i-1} + y_i}{2} \Delta l_i = 2p \frac{y_{i-1} + y_i}{2} \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \Delta x_i$$
. По

формуле конечных приращений Лагранжа $\frac{\Delta y_i}{\Delta x_i} = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = f'(\mathbf{x}_i)$, где $x_{i-1} < \mathbf{x}_i < x_i$.

Поэтому $\Delta S_i = 2p \frac{y_{i-1} + y_i}{2} \sqrt{1 + f'^2(x_i)} \Delta x_i$. Следовательно, площадь всей поверхности,

описанной ломаной при вращении, равна
$$S_n = p \sum_{i=1}^n (f(x_{i-1}) + f(x_i)) \sqrt{1 + f'^2(\mathbf{x}_i)} \Delta x_i$$
.

Назовем площадью поверхности вращения предел этой суммы при $\max \Delta l_i o 0$.

Заметим, что эта сумма не является интегральной суммой для функции $2pf(x)\sqrt{1+f'(x)^2}$, так как в каждом ее слагаемом фигурирует несколько точек данного отрезка разбиения. Однако можно доказать, что предел такой суммы равен пределу интегральной суммы для $2pf(x)\sqrt{1+f'(x)^2}$, откуда получаем формулу для площади поверхности вращения:

$$S = 2p \int_{-\infty}^{b} f(x) \sqrt{1 + f'^{2}(x)} dx.$$
 (14.10)

Пример.

Вычислим площадь поверхности, полученной вращением части кривой $y = \sqrt{x}$ от x = 0 до x = 1. Используя формулу (14.10), получим:

$$S = 2p \int_{0}^{1} \sqrt{x} \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^{2}} dx = 2p \int_{0}^{1} \sqrt{x + \frac{1}{4}} dx = \frac{4p}{3} \left(x + \frac{1}{4}\right)^{\frac{3}{2}} \left| \frac{1}{0} = \frac{p(5\sqrt{5} - 1)}{6} \right|.$$

Лекция 15.

Несобственные интегралы с бесконечными пределами интегрирования. Теорема сравнения для интегралов от неотрицательных функций. Абсолютная и условная сходимость. Признак абсолютной сходимости. Несобственные интегралы от неограниченных функций, исследование их сходимости.

В предыдущих лекциях рассматривались определенные интегралы, соответствующие с геометрической точки зрения площадям замкнутых ограниченных областей (криволинейных трапеций). Расширим понятие определенного интеграла на случай неограниченной области. Такую область можно получить, либо приняв какой-либо из пределов интегрирования равным бесконечности, либо рассматривая график функции с

бесконечными разрывами (то есть неограниченной). Рассмотрим отдельно каждый из указанных случаев.

Несобственные интегралы с бесконечными пределами (несобственные интегралы 1-го рода)

Пусть функция f(x) определена и непрерывна при $x \ge a$. Тогда интеграл $\int_a^b f(x)dx$ имеет смысл при любом b > a и является непрерывной функцией аргумента b.

Определение 15.1. Если существует конечный предел

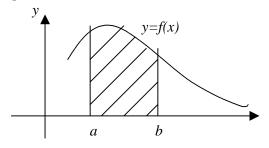
$$\lim_{b \to +\infty} \int_{a}^{b} f(x)dx, \tag{15.1}$$

то его называют **несобственным интегралом 1-го рода** от функции f(x) на интервале

$$[a,+\infty)$$
 и обозначают $\int\limits_a^\infty f(x)dx$. Таким образом, по определению

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$
 (15.2)

При этом говорят, что несобственный интеграл существует или **сходится**. Если же не существует конечного предела (15.1), несобственный интеграл не существует или расходится.



Повторим, что геометрической интерпретацией несобственного интеграла 1-го рода является площадь неограниченной области, расположенной между графиком функции y=f(x), прямой x=a и осью Ox.

Замечание. Аналогичным образом можно определить и несобственные интегралы 1-го рода для других бесконечных интервалов:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx, \qquad \int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$
 (15.3)

В частности, последний интеграл существует только в том случае, если сходятся оба интеграла, стоящие в правой части равенства.

Часто достаточно бывает только установить сходимость или расходимость несобственного интеграла и оценить его значение. *Лемма*.

Если $f(x) \ge 0$ на интервале $[a, +\infty)$, то для сходимости интеграла $\int_{a}^{+\infty} f(x) dx$ необходимо и

достаточно, чтобы множество всех интегралов $\int_{a}^{b} f(x)dx$ (b > a) было ограничено сверху,

то есть чтобы существовала такая постоянная c>0, чтобы $\forall b\in[a,+\infty)$ выполнялось

неравенство
$$\int_{a}^{b} f(x)dx > c.$$
 (15.4)

Доказательство.

Рассмотрим функцию $g(b) = \int\limits_a^b f(x) dx$ и покажем, что в условиях леммы она монотонно возрастает на $[a, +\infty)$. Действительно, при $a \le b < b_1$ $g(b_1) = \int\limits_a^{b_1} f(x) dx = \int\limits_a^b f(x) dx + \int\limits_b^{b_1} f(x) dx \ge \int\limits_a^b f(x) dx = g(b)$, так как при $f(x) \ge 0$ $\int\limits_b^{b_1} f(x) dx \ge 0$. Следовательно, функция g(b) монотонно возрастает и ограничена сверху, поэтому она имеет конечный предел при $x \to +\infty$, что по определению означает существование интеграла $\int\limits_a^{+\infty} f(x) dx$.

Теорема 15.1 (признак сравнения). Пусть $0 \le j$ (x) $x \in [a,+\infty)$. Тогда:

- 1) если интеграл $\int_{a}^{+\infty} f(x)dx$ сходится, то сходится и интеграл $\int_{a}^{+\infty} j(x)dx$;
- 2) если интеграл $\int_a^{+\infty} j(x)dx$ расходится, то расходится и интеграл $\int_a^{+\infty} f(x)dx$.

Доказательство.

Из условия теоремы следует, что $\int_a^b j(x)dx \le \int_a^b f(x)dx \quad \forall b \in [a,+\infty)$. Поэтому, если интегралы $\int_a^b f(x)dx$ ограничены сверху (по лемме), то сверху ограничены и интегралы $\int_a^b j(x)dx$, следовательно, $\int_a^{+\infty} j(x)dx$ сходится (по той же лемме). Если же интеграл $\int_a^{+\infty} j(x)dx$ расходится, то, если бы интеграл $\int_a^{+\infty} f(x)dx$ сходился, то по ранее доказанному $\int_a^{+\infty} j(x)dx$ должен был бы сходиться, что противоречит сделанному предположению. Значит, в этом случае $\int_a^{+\infty} f(x)dx$ расходится. Теорема полностью доказана.

Следствие.

Пусть $f(x) \ge 0, j(x) \ge 0$ на $[a, \infty), j(x) \ne 0 \forall x \in [a, \infty)$ и существует конечный или бесконечный предел $\lim_{x \to \infty} \frac{f(x)}{j(x)} = k$, то:

- а) если интеграл $\int\limits_a^{+\infty} j(x)dx$ сходится и $0 \le k < +\infty$, то сходится и интеграл $\int\limits_a^{+\infty} f(x)dx$;
- б) если интеграл $\int\limits_a^{+\infty} j(x)dx$ расходится и $0 < k \le +\infty$, то интеграл $\int\limits_a^{+\infty} f(x)dx$ тоже расходится.

В частности, если k=1, то есть функции f(x) и $\varphi(x)$ эквивалентны при $x\to\infty$, то интегралы $\int\limits_{+\infty}^{+\infty} f(x)dx$ и $\int\limits_{-\infty}^{+\infty} f(x)dx$ сходятся и расходятся одновременно.

При применении признака сравнения удобно сравнивать подынтегральную функцию с функцией $\frac{1}{x^a}$, $\alpha>0$, для которой сходимость или расходимость соответствующего несобственного интеграла легко установить непосредственно. Пусть $a\neq 1$, тогда

$$\int\limits_{a}^{+\infty} \frac{1}{x^{a}} \, dx = \lim_{b \to \infty} \int\limits_{a}^{b} x^{-a} \, dx = \lim_{b \to \infty} \frac{x^{1-a}}{1-a} \bigg|_{a}^{b} = \lim_{b \to \infty} \left(\frac{x^{1-b}}{1-b} - \frac{x^{1-a}}{1-a} \right) = \begin{cases} +\infty(a < 1) \\ \frac{x^{1-a}}{a-1}(a > 1) \end{cases}.$$
 При $\alpha = 1$

$$\int\limits_a^{+\infty} \frac{1}{x} dx = \lim\limits_{b \to \infty} \int\limits_a^b \frac{1}{x} dx = \lim\limits_{b \to \infty} \left(\ln |x| \left| \begin{matrix} b \\ a \end{matrix} \right| = \lim\limits_{b \to \infty} (\ln b - \ln a) = \infty \; . \; \text{Следовательно,} \; \int\limits_a^{+\infty} \frac{1}{x^a} dx$$
 сходится при $\alpha > 1$ и расходится при $\alpha \le 1$.

Пример.

Исследуем на сходимость $\int\limits_{1}^{\infty} \frac{2x-7}{x^3+x^2+5x+12} dx$. При $x \to \infty$ подынтегральная функция эквивалентна $\frac{2}{x^2}$. Таким образом, $\alpha=2>1$, и данный интеграл сходится.

Абсолютная сходимость несобственных интегралов 1-го рода.

Определение 15.2. Несобственный интеграл $\int_{a}^{+\infty} f(x)dx$ называют **абсолютно сходящимся**, если сходится интеграл $\int_{a}^{+\infty} |f(x)| dx$. Функция f(x) называется при этом **абсолютно интегрируемой** на $[a,\infty)$.

Признак абсолютной сходимости несобственного интеграла (критерий Коши) — без доказательства.

Для того, чтобы $\int\limits_a^{+\infty} f(x) dx$ абсолютно сходился, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовало такое η , что при $\eta' > \eta$, $\eta'' > \eta$ $\left| \int\limits_{b'}^{h'} |f(x)| \, dx \right| < e$.

Теорема 15.2. Если интеграл $\int_{a}^{+\infty} f(x)dx$ абсолютно сходится, то он сходится и в обычном смысле. Доказательство.

Согласно критерию Коши
$$\left| \int_{a}^{h'} f(x) dx - \int_{a}^{h'} f(x) dx \right| = \left| \int_{h'}^{h'} f(x) dx \right| \le \left| \int_{h'}^{h'} f(x) dx \right| < e$$
.

Следовательно, существует конечный предел $\int\limits_a^b f(x)dx$ при $h \to b$, то есть

рассматриваемый интеграл сходится.

Несобственные интегралы от функций с бесконечными разрывами (несобственные интегралы 2-го рода).

Определение 15.3. Пусть функция f(x) определена и непрерывна при $a \le x < b$ и имеет разрыв при x=b. Тогда $\int_a^b f(x)dx$ определяется следующим образом: $\int_a^b f(x)dx = \lim_{e\to 0} \int_a^{b-e} f(x)dx$

$$\int_{a}^{b} f(x)dx = \lim_{e \to 0} \int_{a}^{b-e} f(x)dx$$
 (15.5)

и называется несобственным интегралом 2-го рода. Если предел, стоящий справа, существует и конечен, интеграл называется сходящимся, в противном случае расходящимся.

Аналогичным образом определяются несобственные интегралы от функции, имеющей

разрыв при x=a: $\int\limits_a^b f(x)dx=\lim_{e\to 0}\int\limits_{a+e}^b f(x)dx$ и от функции, разрывной в точке c (a< c< b): $\int\limits_a^b f(x)dx=\int\limits_a^c f(x)dx+\int\limits_a^b f(x)dx\,,$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

если существуют оба интеграла, стоящие в правой части равенства.

Для несобственных интегралов 2-го рода справедливы те же утверждения, что и для несобственных интегралов 1-го рода:

Теорема 15.3(признак сравнения). Пусть функции f(x) и $\varphi(x)$ непрерывны при $a \le x < b$ и имеют разрыв при x = b. Пусть, кроме того, $0 \le j(x) \le f(x)$ при $x \in [a,b)$. Тогда:

- 1) если интеграл $\int\limits_a^b f(x)dx$ сходится, то сходится и интеграл $\int\limits_a^b j(x)dx$;
- 2) если интеграл $\int_{a}^{b} f(x)dx$ расходится, то расходится и интеграл $\int_{a}^{b} f(x)dx$.

Теорема 15.4. Если f(x) — знакопеременная функция, непрерывная на [a,b) и имеющая разрыв при x = b, и если $\int |f(x)| dx$ сходится, то сходится и интеграл $\int f(x) dx$.

Замечание 1. Эти теоремы доказываются так же, как теоремы 15.1 и 15.2.

Замечание 2. При выполнении условий теоремы 15.4 несобственный интеграл $\int f(x)dx$ называется абсолютно сходящимся, а функция f(x) — абсолютно интегрируемой.

Следствие из теоремы 15.3.

Если $f(x) \le \frac{1}{(b-x)^a}$ при $x \to b$, то при $\alpha < 1$ $\int\limits_a^b f(x) dx$ сходится, а при $\alpha \ge 1$ расходится. Доказательство.

$$\int_{a}^{b} \frac{1}{(b-x)^{a}} dx = \int_{a}^{b} (b-x)^{-a} dx = \lim_{e \to 0} \int_{a}^{b-e} f(x) dx = \begin{cases} \frac{(b-a)^{1-a}}{1-a}, a < 1; \\ \lim_{e \to 0} (\ln(b-a) - \ln e) = \infty, a = 1; \\ \frac{1}{(1-a)(b-a)^{a-1}} - \lim_{e \to 0} \frac{1}{(1-a)e^{a-1}} = \infty, a > 1. \end{cases}$$

Таким образом, интеграл $\int\limits_a^b \frac{1}{\left(b-x\right)^a} \, dx$ сходится при $\alpha < 1$ и расходится при $\alpha \ge 1$.

Лекция 16.

Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка. Изоклины. Задача Коши. Теорема существования и единственности задачи Коши.

Уравнения, в которые неизвестная функция входит под знаком производной или дифференциала, называются дифференциальными уравнениями. Подобными уравнениями описываются многие физические явления и процессы.

Примеры.

1) $\frac{dx}{dt} = -kx$ - уравнение радиоактивного распада (k - постоянная распада, x - количество неразложившегося вещества в момент времени t, скорость распада $\frac{dx}{dt}$ пропорциональна количеству распадающегося вещества).

2) $m\frac{d^2\vec{r}}{dt^2} = \vec{F}(t,\vec{r},\frac{d\vec{r}}{dt})$ - уравнение движения точки массы m под влиянием силы F, зависящей от времени, положения точки, определяемого радиус-вектором r, и ее скорости $\frac{d\vec{r}}{dt}$. Сила равна произведению массы на ускорение.

3)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 4pr(x, y, z)$$
 - уравнение Пуассона, задающее зависимость между многими физическими величинами. Например, можно считать, что $u(x, y, z)$ – потенциал электростатического поля, а $\rho(x, y, z)$ – плотность зарядов.

Мы будем рассматривать уравнения, где неизвестная функция является функцией одной переменной. Такие уравнения называются обыкновенными дифференциальными уравнениями.

$$F(x,u(x),u'(x),u''(x),...,u^{(n)}(x)) = 0$$
(16.1)

называется **обыкновенным** дифференциальным уравнением *n*-го порядка. При этом порядком уравнения называется максимальный порядок входящей в него производной.

Определение 16.2. Функция, которая при подстановке в уравнение (16.1) обращает его в тождество, называется **решением** дифференциального уравнения.

Дифференциальные уравнения первого порядка, разрешенные относительно производной.

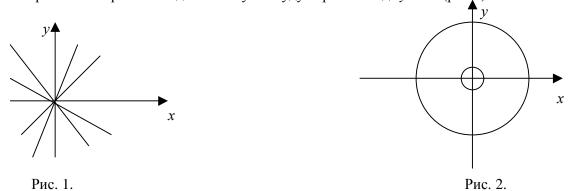
Рассмотрим уравнение вида
$$\frac{dy}{dx} = f(x, y)$$
. (16.2)

Можно показать, что общее решение такого уравнения зависит от одной произвольной постоянной. С геометрической точки зрения уравнение (16.2) устанавливает зависимость между координатами точки на плоскости и угловым коэффициентом $\frac{dy}{dx}$ касательной к графику решения в той же точке. Следовательно, уравнение (16.2) определяет некоторое поле направлений, и задача его решения состоит в том, чтобы найти кривые, называемые **интегральными кривыми**, направление касательных к которым в каждой точке плоскости совпадает с направлением этого поля.

Примеры.

1)
$$\frac{dy}{dx} = \frac{y}{x}$$
. В каждой точке, кроме начала координат, угловой коэффициент к искомой

интегральной кривой равен $\frac{y}{x}$, то есть тангенсу угла, образованного с осью Ox прямой, проходящей через данную точку и начало координат. Следовательно, интегральными кривыми в данном случае будут прямые вида y = cx (рис.1).



2) $\frac{dy}{dx} = -\frac{x}{y}$. В этом случае касательная в каждой точке плоскости перпендикулярна направлению прямой, проходящей через эту точку и начало координат, так как угловые коэффициенты этих прямых удовлетворяют условию ортогональности:

$$-\frac{x}{y} \cdot \frac{y}{x} = -1$$
. Поэтому направление касательной в данной точке совпадает с

направлением касательной к окружности с центром в начале координат, на которой лежит выбранная точка. Такие окружности и являются интегральными кривыми данного уравнения (рис. 2).

Часто для построения интегральных кривых удобно предварительно найти геометрическое место точек, в которых касательные к искомым интегральным кривым сохраняют постоянное направление. Такие линии называются изоклинами.

Пример.

Изоклины уравнения
$$\frac{dy}{dx} = \sqrt{x^2 + y^2}$$
 задаются уравнениями $\sqrt{x^2 + y^2} = k$ или

$$x^2 + y^2 = k^2$$
, так как на каждой изоклине производная $\frac{dy}{dx}$ должна сохранять

постоянное значение. Полученные уравнения задают семейство концентрических окружностей с центром в начале координат, а угловой коэффициент касательной к интегральной кривой равен радиусу проходящей через данную точку окружности.

Задача Коши для уравнения первого порядка.

Как уже было сказано, общим решением уравнения (16.2) является все множество функций, обращающих при подстановке рассматриваемое уравнение в тождество. Пусть теперь требуется найти решение этого уравнения, удовлетворяющее условию

$$y(x_0) = y_0, (16.3)$$

называемому **начальным условием**. Если общее решение уравнения (16.2) задается формулой $y = \varphi(x, C)$, (16.4) то значение постоянной C, соответствующее поставленному начальному условию, можно определить, подставив в равенство (16.4) $x = x_0$ и $y = y_0$.

Определение 16.3. Задача выбора из общего решения (16.4) уравнения (16.2) решения, удовлетворяющего начальному условию (16.3), называется **задачей Коши**, а выбранное решение называется **частным решением** уравнения (16.2).

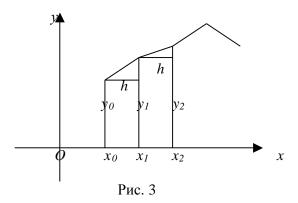
Замечание. Если воспринимать множество всех решений уравнения (16.2) как множество интегральных кривых на плоскости, то ставится задача поиска той из них, которая проходит через точку с координатами (x_0 , y_0). Выясним, при каких условиях такая кривая существует и является единственной.

Теорема существования и единственности задачи Коши.

Рассмотрим предварительно метод приближенного решения дифференциальных уравнений, обоснование которого будет дано в приведенной ниже теореме.

Метод Эйлера.

Метод Эйлера заключается в том, что искомая интегральная кривая уравнения (16.2), проходящая через точку (x_0 , y_0), заменяется ломаной, каждое звено которой касается интегральной кривой в одной из своих граничных точек (рис. 3).



Пусть требуется найти приближенное значение искомого решения при x=b. Разделим отрезок $[x_0,b]$ на n равных частей (полагаем, что $b>x_0$) и назовем шагом вычисления h длину отрезка $[x_{i-1}, x_i]$. Заменим на отрезке $[x_0, x_1]$ интегральную кривую отрезком ее касательной в точке (x_0, y_0) . Ордината этого отрезка при $x=x_1$ равна $y_1=y_0+hy_0'$, где $y_0'=f(x_0,y_0)$. Так же найдем

Можно предположить, что при $h \to 0$ построенные таким образом **ломаные Эйлера** приближаются к графику искомой кривой. Доказательство этого утверждения будет дано в следующей теореме:

Теорема 16.1 (теорема существования и единственности решения). Если в уравнении

$$\frac{dy}{dx} = f(x, y)$$

функция f(x,y) непрерывна в прямоугольнике D:

$$x_0 - a \le x \le x_0 + a, y_0 - b \le y \le y_0 + b \tag{16.5}$$

и удовлетворяет в *D* условию Липшица:

$$|f(x,y_1)-f(x,y_2)| \leq N \, |y_1-y_2|, \eqno(16.6)$$
 где $N-$ постоянная, то существует единственное решение $y=y(x), x_0-H \leq x \leq x_0+H$,уравнения (16.2), удовлетворяющее условию (16.3) , где $H < \min(a,\frac{b}{M},\frac{1}{N}), M=\max f(x,y)$ в D .

Замечание 1. Нельзя утверждать, что искомое решение будет существовать при $x \in [x_0 - a, x_0 + a]$, так как интегральная кривая может выйти из прямоугольника (16.5), и тогда решение может быть не определено.

Замечание 2. Условие Липшица (16.6) можно заменить более сильным требованием $|f_y'(x,y)| \le N$ в D. Тогда по теореме Лагранжа $|f(x,y_1)-f(x,y_2)| = f_y'(x,x)|y_1-y_2|$, где $y_1 \le x \le y_2$. Таким образом, $x \in D$ и $|f_y'(x,x)| \le N$. Поэтому $|f(x,y_1)-f(x,y_2)| \le N|y_1-y_2|$.

Доказательство теоремы 16.1.

Заменим уравнение (16.2) с начальным условием (16.3) эквивалентным интегральным

уравнением
$$y = y_0 + \int_{x_0}^{x} f(x, y) dx$$
 (16.7)

Легко проверить, что функция, обращающая в тождество уравнение (16.2), будет решением и уравнения (16.7).

Построим ломаную Эйлера $y=y_n(x)$, исходящую из точки (x_0,y_0) с шагом $h_n=\frac{H}{n}$ на

отрезке $[x_0, x_0 + H]$ (аналогично можно доказать существование решения на $[x_0 - H, x_0]$). Такая ломаная не может выйти за пределы D, так как угловые коэффициенты каждого ее звена по модулю меньше M. Теперь докажем последовательно три утверждения:

- 1) Последовательность $y = y_n(x)$ равномерно сходится.
- 2) Функция $\bar{y}(x) = \lim_{n \to \infty} y_n(x)$ является решением интегрального уравнения (16.7).

3) Решение y(x) уравнения (16.7) единственно.

Доказательство 1). По определению ломаной Эйлера

$$y'_n(x) = f(x_k, y_k)$$
 при $x_k \le x \le x_{k+1}, k = 0, 1, ..., n-1$, или $y'_n(x) = f(x, y_n(x)) + (f(x_k, y_k) - f(x, y_n(x)))$. (16.8)

Обозначим $f(x_k, y_k) - f(x, y_n(x)) = h_n(x)$, тогда в силу равномерной непрерывности f(x) в $D = |h_n(x)| = |f(x_k, y_k) - f(x, y_n(x))| < e_n$ (16.9)

при $n>N(e_n)$, где $e_n\to 0$ при $n\to \infty$, так как $|x-x_k|\le h_n$, а $|y_k-y_n(x)|< Mh_n$ и $h_n=\frac{H}{n}\to 0$ при $n\to \infty$. Интегрируя (16.8) по x в пределах от x_0 до x и учитывая, что $y_n(x_0)=y_0$, получим:

$$y_n(x) = y_0 + \int_{x_0}^{x} f(t, y_n(t))dt + \int_{x_0}^{x} h_n(t)dt.$$
 (16.10)

Так как n – любое целое положительное число, то для любого m>0

$$y_{n+m}(x) = y_0 + \int\limits_{x_0}^x f(t,y_{n+m}(t))dt + \int\limits_{x_0}^x \pmb{h}_{n+m}(t)dt$$
, откуда

$$|y_{n+m}(x) - y_n(x)| = \int_{x_0}^x (f(t, y_{n+m}(t)) - f(t, y_n(t)) dt + \int_{x_0}^x h_{n+m}(t) dt - \int_{x_0}^x h_n(t) dt | \le 1$$

$$\leq \int\limits_{x_0}^{x} |f(t,y_{n+m}(t)) - f(t,y_n(t))| \, dt + \int\limits_{x_0}^{x} |h_{n+m}(t)| \, dt + \int\limits_{x_0}^{x} |h_n(t)| \, dt \, .$$

Тогда из (16.9) и условия Липшица следует, что

$$\mid y_{n+m}(x)-y_n(x)\mid \leq N\int\limits_{x_0}^{x}\mid y_{n+m}(t)-y_n(t)\mid dt+(e_{n+m}+e_n)H$$
 . Следовательно,

$$\max_{x_0 \leq x \leq x_0 + H} \mid y_{n+m}(x) - y_n(x) \mid \leq N \max \int_{x_0}^{x} \mid y_{n+m}(t) - y_n(t) \mid dt + (e_{n+m} + e_n)H \text{ , откуда}$$

$$\max_{x_0 \leq x \leq x_0 + H} \mid y_{n+m}(x) - y_n(x) \mid \leq \frac{(e_{n+m} + e_n)H}{1 - NH} < e \qquad \qquad \forall e > 0 \qquad \text{при} \qquad n > N_1(e) \,, \quad \text{то} \quad \text{есть}$$

последовательность непрерывных функций $y_n(x)$ равномерно сходится при $x_0 \le x \le x_0 + H$ к непрерывной функции y(x). Итак, утверждение 1) доказано.

Доказательство 2). Перейдем в (16.10) к пределу при $n \to \infty$:

$$\lim_{n \to \infty} y_n(x) = \overline{y}(x) = y_0 + \lim_{n \to \infty} \int_{x_0}^x f(t, y_n(t)) dt + \lim_{n \to \infty} \int_{x_0}^x h_n(t) dt.$$
 (16.11)

В силу равномерной сходимости $y_n(x)$ к y(x) и равномерной непрерывности f(x,y) в D последовательность $f(x,y_n(x))$ равномерно сходится к $f(x, y_n(x))$. Действительно, $|f(x,y_n(x))-f(x,y_n(x))| < e$ при $|y(x)-y_n(x)| < d(e)$, что выполняется при $n > N_1(d(e)) \forall x \in [x_0,x_0+H]$.

Следовательно, возможен переход к пределу под знаком интеграла. Учитывая, что $|h_n(e)| < e_n$, где $e_n \to 0$ при $n \to \infty$, получим из (16.11):

$$\overline{y}(x) = y_0 + \int_{x}^{x} f(x, \overline{y}(x)) dx,$$

то есть y(x) удовлетворяет уравнению (16.7). Утверждение 2) доказано.

Доказательство 3). Предположим, что существуют два различных решения уравнения (16.7) $y_I(x)$ и $y_2(x)$, то есть $\max_{x_0 \le x \le x_0 + H} |y_I(x) - y_2(x)| \neq 0$. Тогда, подставляя эти функции в (16.7) и вычитая полученные равенства друг из друга, получим:

$$\begin{aligned} y_1(x) - y_2(x) &\equiv \int\limits_{x_0}^x (f(x,y_1(x)) - f(x,y_2(x))) dx \text{, откуда} \\ &\underset{x_0 \leq x \leq x_0 + H}{\max} \mid y_I(x) - y_2(x) \mid = \max_{x_0 \leq x \leq x_0 + H} \left| \int\limits_{x_0}^x (f(x,y_1(x)) - f(x,y_2(x))) dx \right| \leq \\ &\leq \max_{x_0 \leq x \leq x_0 + H} \left| \int\limits_{x_0}^x \mid f(x,y_1(x)) - f(x,y_2(x)) \mid dx \right| \text{. Применим к этому неравенству условие Липшица:} \\ &\underset{x_0 \leq x \leq x_0 + H}{\max} \mid y_I(x) - y_2(x) \mid \leq N \max_{x_0 \leq x \leq x_0 + H} \left| \int\limits_{x_0}^x \mid y_1(x) - y_2(x) \mid dx \right| \leq N \max_{x_0 \leq x \leq x_0 + H} \mid y_I(x) - y_2(x) \mid \max_{x_0 \leq x \leq x_0 + H} \left| \int\limits_{x_0}^x dx \right| \\ &= NH \max_{x_0 \leq x \leq x_0 + H} \mid y_I(x) - y_2(x) \mid \text{. Если } \max_{x_0 \leq x \leq x_0 + H} \mid y_I(x) - y_2(x) \mid \neq 0, \text{ то полученное равенство:} \\ &\underset{x_0 \leq x \leq x_0 + H}{\max} \mid y_I(x) - y_2(x) \mid \leq NH \max_{x_0 \leq x \leq x_0 + H} \mid y_I(x) - y_2(x) \mid \text{ противоречиво, так как по условию} \\ &\text{теоремы } H < \frac{1}{N} \text{. Следовательно, } \max_{x_0 \leq x \leq x_0 + H} \mid y_I(x) - y_2(x) \mid = 0, \text{ то есть } y_I(x) \equiv y_2(x). \end{aligned}$$

Лекция 17.

Методы решения простейших дифференциальных уравнений первого порядка (с разделяющимися переменными, «однородных», линейных и сводящихся к ним).

1. Уравнения с разделяющимися переменными.

Дифференциальные уравнения вида

$$f_2(y)dy = f_1(x)dx (17.1)$$

называются уравнениями с разделяющимися переменными. Тогда любое решение y(x)этого уравнения будет удовлетворять и уравнению

$$\int f_2(y)dy = \int f_1(x)dx + c,$$
 (17.2)

где c – произвольная постоянная. Если удается найти первообразные функций $f_1(x)$ и $f_2(y)$, выраженные в элементарных функциях, то из (17.2) можно получить конечное уравнение $\Phi(x, v) = 0$, (17.3)

которое определяет решение y(x) уравнения (17.1) как неявную функцию x.

Определение 17.1. Уравнение вида (17.3) называется интегралом уравнения (17.1), а если оно определяет все решения (17.1) – общим интегралом этого уравнения.

Пример.

$$\sqrt{y^2 + 1}dx = xydy$$
. Приведем уравнение к виду (17.1): $\frac{ydy}{\sqrt{y^2 + 1}} = \frac{dx}{x}$, откуда

$$\int \frac{ydy}{\sqrt{y^2+1}} = \int \frac{dx}{x} + C$$
. Проинтегрируем обе части равенства: $\sqrt{y^2+1} = \ln|x| + C$.

Полученное уравнение можно считать общим интегралом или решением исходного уравнения.

Если требуется найти **частное решение** уравнения (17.1), удовлетворяющее условию $y(x_0)=y_0$, достаточно подставить значения x_0 и y_0 в уравнение (17.3) и найти значение c, соответствующее начальному условию.

Пример.

Найти решение уравнения y'ctg x + y = 2, удовлетворяющее условию y(0) = -1.

Разделим переменные:
$$\int \frac{dy}{2-y} = \int \frac{\sin x dx}{\cos x} + c, -\ln|2-y| = -\ln|\cos x| - \ln|c|,$$

 $2 - y = c \cdot \cos x$. Подставив в это равенство x = 0 и y = -1, получим, что c = 3. Следовательно, искомое частное решение имеет вид: $y = 2 - 3\cos x$.

2. Уравнения, приводимые к уравнениям с разделяющимися переменными.

Если требуется решить уравнение вида
$$\frac{dy}{dx} = f(ax + by)$$
, (17.4)

где a и b — постоянные числа, то с помощью замены переменной z = ax + by оно сводится к уравнению с разделяющимися переменными:

$$\frac{dz}{dx} = a + b\frac{dy}{dx}, \quad \frac{dz}{dx} = a + bf(z), \quad \frac{dz}{a + bf(z)} = dx.$$

Пример.

$$y' = \sqrt{4x + 2y - 1}$$
. Замена: $z = 4x + 2y - 1$, тогда $\int \frac{dz}{4 + 2\sqrt{z}} = \int dx + c$. Вычислим

интеграл в левой части равенства: замена $u = \sqrt{z}, z = u^2, dz = 2udu$ приводит к

$$\int \frac{2udu}{4+2u} = \int \left(1 - \frac{4}{4+2u}\right) du = u - 2\ln|4+2u| = \sqrt{z} - 2\ln(4+2\sqrt{z}) = \sqrt{4x+2y-1} - 2\ln(4+2u) = \sqrt{2} - 2\ln(4+2u$$

 $-2\ln(4+2\sqrt{4x+2y-1})$. Проинтегрировав теперь правую часть равенства, получим общий интеграл: $\sqrt{4x+2y-1} - 2\ln(4+2\sqrt{4x+2y-1}) = x+c$.

3. Однородные уравнения.

К уравнениям с разделяющимися переменными приводятся и так называемые **однородные дифференциальные уравнения первого порядка**, имеющие вид:

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right). \tag{17.5}$$

Действительно, замена $t=\frac{y}{x}$ или y=xt приводит к $\frac{dy}{dx}=x\frac{dt}{dx}+t, \quad x\frac{dt}{dx}+t=f(t),$

$$\frac{dt}{f(t)-t} = \frac{dx}{x}, \quad \int \frac{dt}{f(t)-t} = \ln|x| + \ln c, \quad x = ce^{\int \frac{dt}{f(t)-t}}.$$

Еще одной формой однородного уравнения является уравнение

$$M(x,y) dx + N(x,y) dy = 0,$$
 (17.6)

если M(x,y) и N(x,y) — однородные функции одинаковой степени однородности. При dv = M(x,y)

этом
$$\frac{dy}{dx} = -\frac{M(x, y)}{N(x, y)} = f\left(\frac{y}{x}\right).$$

Пример.

 $y^2 + x^2y' = xyy'$. Преобразуем уравнение к виду (17.5): $y'(xy - x^2) = y^2$, $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$,

$$\frac{dy}{dx} = \frac{\left(\frac{y}{x}\right)^2}{\frac{y}{x} - 1}$$
. После замены $y = xt$ получим: $x\frac{dt}{dx} + t = \frac{t^2}{t - 1}$, $x\frac{dt}{dx} = \frac{t}{t - 1}$,

$$\frac{(t-1)dt}{t} = \frac{dx}{x}, \quad \int \left(1 - \frac{1}{t}dt\right) = \int \frac{dx}{x} + c, \quad t - \ln|t| = \ln|x| + \ln|C|, \quad Cxt = e^t, \quad Cy = e^{\frac{y}{x}}.$$

В однородные можно преобразовать и уравнения вида

$$\frac{dy}{dx} = f\left(\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\right) \tag{17.7}$$

с помощью замены $X = x - x_1$, $Y = y - y_1$, где x_1 , y_1 – решение системы уравнений $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$.

(С геометрической точки зрения производится перенос начала координат в точку пересечения прямых $a_1x + b_1y + c_1 = 0$ и $a_2x + b_2y + c_2 = 0$). Тогда, поскольку $\frac{dy}{dx} = \frac{dY}{dX}$, в новых переменных уравнение примет вид:

$$\frac{dY}{dX} = f \left(\frac{a_1 X + b_1 Y}{a_2 X + b_2 Y} \right) \text{ или } \frac{dY}{dX} = f \left(\frac{a_1 + b_1 \frac{Y}{X}}{a_2 + b_2 \frac{Y}{X}} \right) = j \left(\frac{Y}{X} \right) \text{- однородное уравнение.}$$

Пример.

(y + 2) dx = (2x + y - 4)dy. Запишем уравнение в виде $\frac{dy}{dx} = \frac{y+2}{2x+y-4}$. Решением системы y + 2 = 0, 2x + y - 4 = 0 будут $x_1 = 3$, $y_1 = -2$. В новых переменных X = x - 3, Y = y + 2 получим однородное уравнение $\frac{dY}{dX} = \frac{Y}{2X + Y}$, которое можно решить с

помощью обычной замены Y=Xt. Тогда $X\frac{dt}{dX}+t=\frac{t}{2+t}$, $-X\frac{dt}{dX}=\frac{t^2+t}{t+2}$,

$$\frac{(t+2)dt}{t(t+1)} = -\frac{dX}{X}\,, \qquad \int \left(-\frac{1}{t+1} + \frac{2}{t}\right) dt = -\int \frac{dX}{X} + c, \qquad \ln\left|\frac{t^2}{t+1}\right| = -\ln\mid X\mid + \ln\mid C\mid, \quad \text{и после}$$

обратной замены общий интеграл выглядит так: $(y+2)^2 = C(x+y-1)$. Заметим, в это общее решение входит при C=0 и частное решение y=1-x, которое могло быть потеряно при делении на y+x-1.

4. Линейные уравнения.

Линейным дифференциальным уравнением первого порядка называется уравнение вида

$$\frac{dy}{dx} + p(x)y = f(x),\tag{17.8}$$

линейное относительно неизвестной функции y(x) и ее производной. При этом будем предполагать, что p(x) и f(x) непрерывны.

В случае, когда $f(x) \equiv 0$, уравнение (17.8) называется **однородным**. Такое уравнение является уравнением с разделяющимися переменными:

$$\frac{dy}{dx} + p(x)y = 0$$
, откуда $\frac{dy}{y} = -p(x)dx$, $\ln|y| = -\int p(x)dx + \ln c$, $y = Ce^{-\int p(x)dx}$.(17.9)

При делении на y могло быть потеряно решение y = 0, но оно входит в общее решение при C = 0.

Для решения неоднородного уравнения (17.8) применим **метод вариации постоянной**. Предположим, что общее решение уравнения (17.8) имеет форму (17.9), в которой C – не постоянная, а неизвестная функция аргумента x: $y = C(x)e^{-\int p(x)dx}$. Тогда

$$\frac{dy}{dx} = \frac{dC}{dx}e^{-\int p(x)dx} - C(x)p(x)e^{-\int p(x)dx}$$
. Подставив эти выражения в уравнение (17.8),

получим:
$$\frac{dC}{dx}e^{-\int p(x)dx}-C(x)p(x)e^{-\int p(x)dx}+p(x)\ C(x)e^{-\int p(x)dx}=f(x), \text{ откуда}$$

$$\frac{dC}{dx} = f(x)e^{\int p(x)dx}, C(x) = \int f(x)e^{\int p(x)dx}dx + c, y = ce^{-\int p(x)dx} + e^{-\int p(x)dx} \int f(x)e^{\int p(x)dx}dx.$$
(17.10)

Замечание. При решении конкретных задач удобнее не использовать в готовом виде формулу (17.10), а проводить все указанные преобразования последовательно.

Пример.

Найдем общее решение уравнения $y' = 2 x (x^2 + y)$. Представим уравнение в виде: $y' - 2xy = 2x^3$ и решим соответствующее однородное уравнение: y' - 2xy = 0.

$$\frac{dy}{dx} = 2xy, \frac{dy}{y} = 2xdx, \int \frac{dy}{y} = \int 2xdx + C_1, \ln|y| = x^2 \ln|C|, y = Ce^{x^2}$$
. Применим метод

вариации постоянных: пусть решение неоднородного уравнения имеет вид:

$$y = C(x)e^{x^2}$$
, тогда $\frac{dy}{dx} = C'e^{x^2} + C(x)e^{x^2} \cdot 2x$. Подставим полученные выражения в

уравнение:
$$C'e^{x^2} + C(x)e^{x^2} \cdot 2x - 2xC(x)e^{x^2} = 2x^3$$
. Следовательно, $C' = 2x^3e^{-x^2}$, $C(x) = \int 2x^3e^{-x^2}dx = \int x^2e^{-x^2}dx^2 = \int te^{-t}dt = -te^{-t} + \int e^{-t}dt = -te^{-t} - e^{-t} + c = -x^2e^{-x^2} - e^{-x^2} + c$.

При этом общее решение исходного уравнения
$$y = (-x^2e^{-x^2} - e^{-x^2} + c)e^{x^2} = ce^{x^2} - x^2 - 1$$
.

К линейным уравнениям можно свести с помощью замены некоторые другие дифференциальные уравнения, например, **уравнение Бернулли**:

$$\frac{dy}{dx} + p(x)y = f(x)y^{n}, n \neq 1.$$
 (17.11)

Разделив на y^n , получим: $y^{-n} \frac{dy}{dx} + p(x)y^{1-n} = f(x)$, а замена $z = y^{1-n}$, $\frac{dz}{dx} = (1-n)y^{-n} \frac{dy}{dx}$ приводит к линейному уравнению относительно z:

$$\frac{1}{1-n}\frac{dz}{dx} + p(x)z = f(x).$$

Пример.

$$y' = y^4 \cos x + ytgx$$
, $y' - ytgx = y^4 \cos x$, $\frac{1}{y^4} \frac{dy}{dx} - \frac{1}{y^3} tgx = \cos x$. Сделаем замену:

$$z = \frac{1}{v^3}, \frac{dz}{dx} = -\frac{3}{v^4} \frac{dy}{dx}$$
. Относительно z уравнение стало линейным: $-\frac{1}{3}z' - ztgx = \cos x$.

Решим однородное уравнение:
$$\frac{dz}{3dx} = -ztgx$$
, $\frac{dz}{z} = \frac{-3\sin xdx}{\cos x}$, $\ln|z| = 3\ln|\cos x| + \ln C_1$,

$$z = C\cos^3 x$$
. Применим метод вариации постоянных: $z = C(x)\cos^3 x$, $\frac{dz}{dx} = C'\cos^3 x - C'\cos^3 x$

 $-3C(x)\cos^2 x \sin x$. Подставим эти результаты в неоднородное уравнение:

$$-\frac{1}{3}C'\cos^3 x + C(x)\cos^2 x \sin x - C(x)\cos^3 x t g x = \cos x, C' = -\frac{3}{\cos^2 x}, C(x) = -\int \frac{3dx}{\cos^2 x} = -\frac{3}{\cos^2 x} \cos^2 x + C(x)\cos^2 x \sin x - C(x)\cos^3 x t g x = -\frac{3}{\cos^2 x} \cos^2 x \cos^$$

= -3tgx + c. Окончательно получаем: $y^{-3} = (-3tgx + c)\cos^3 x = c\cos^3 x - 3\sin x\cos^2 x$.

Дополним это общее решение частным решением y = 0, потерянным при делении на y^4 .

Лекиия 18.

Дифференциальные уравнения высших порядков. Задача Коши. Понятие о краевых задачах для дифференциальных уравнений. Уравнения, допускающие понижение порядка.

Рассмотрим дифференциальное уравнение n-го порядка:

$$F(x, y, y', ..., y^{(n)}) = 0,$$
 (18.1)

где F предполагается непрерывной функцией всех своих аргументов. Тогда по теореме о существовании неявной функции (см. лекцию) можно разрешить это уравнение относительно старшей производной:

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)})$$
(18.2)

и сформулируем для него (без доказательства) теорему существования и единственности решения:

Теорема 18.1. Существует единственное решение уравнения (18.2), удовлетворяющее условиям

$$y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)},$$
 (18.3)

если в окрестности начальных значений (x_0 , y_0 , y'_0 ,..., $y_0^{(n-1)}$) функция f является непрерывной функцией всех своих аргументов и удовлетворяет условию Липшица по всем аргументам, начиная со второго.

Замечание 1. Так же, как и для дифференциального уравнения 1-го порядка, задача отыскания решения уравнения (18.2), удовлетворяющего условиям (18.3), называется задачей Коши.

Замечание 2. Теорема 18.1 утверждает существование частного решения уравнения (18.2), удовлетворяющего данным начальным условиям. С геометрической точки зрения это соответствует существованию интегральной кривой, проходящей через точку $(x_0, y_0, y_0', ..., y_0^{(n-1)})$. Но, используя эту теорему, можно доказать и существование общего решения уравнения (18.2), содержащего n произвольных постоянных и имеющего вид:

$$y = j(x, C_1, C_2, ..., C_n)$$
(18.4)

или, в неявной форме:

$$\Phi(x, y, C_1, C_2, ..., C_n) = 0. \tag{18.5}$$

Соотношение (18.5) будем называть общим интегралом уравнения (18.1) или (18.2).

Уравнения, допускающие понижение порядка.

В некоторых случаях порядок дифференциального уравнения может быть понижен, что обычно облегчает его интегрирование. Рассмотрим несколько типов подобных уравнений.

1. Уравнение не содержит искомой функции и ее производных по порядок (k-1) включительно:

$$F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0.$$
 (18.6)

В этом случае можно сделать замену $p = y^{(k)}$, которая позволяет понизить порядок уравнения до n-k, так как после замены уравнение примет вид

$$F(x, p, p', ..., p^{(n-k)}) = 0$$
.

Из этого уравнения можно найти p = p (x, C_1 , C_2 , ..., C_{n-k}), а затем найти y с помощью интегрирования k раз функции p = p (x, C_1 , C_2 , ..., C_{n-k}).

Пример.

Уравнение $y'''=y''^2$ при замене p(x)=y'' становится уравнением 1-го порядка относительно p: $p'=p^2$, откуда $\frac{dp}{p^2}=dx$, $-\frac{1}{p}=x+C_1$, $p=-\frac{1}{x+C_1}$. Тогда $y'=\int p(x)dx=-\int \frac{dx}{x+C_1}=-\ln(x+C_1)+C_2, \ y=\int y'dx=-\int (\ln(x+C_1)-C_2)dx=$ $=-\int \ln(x+C_1)dx+C_2x+C_3=-x\ln(x+C_1)+\int \frac{x}{x+C_1}dx+C_2x+C_3=-x\ln(x+C_1)+x -C_1\ln(x+C_1)+C_2x+C_3=C_3+\overline{C}_2x-(x+C_1)\ln(x+C_1).$

2. Уравнение не содержит независимой переменной:

$$F(y, y', ..., y^{(n)}) = 0. (18.7)$$

Порядок такого уравнения можно понизить на единицу заменой y' = p(y). При этом производные функции f(x) по аргументу x нужно выразить через производные p по y:

$$\frac{dy}{dx} = p(x), \frac{d^2y}{dx^2} = \frac{dp}{dx} = \frac{dp}{dy}\frac{dy}{dx} = p \cdot p'$$
 и т.д.

Пример

y'' = 2yy'. Пусть y' = p(y), $y'' = p \cdot p'$, тогда pp' = 2yp. Отметим частное решение p = 0, то есть y' = 0, y = C. Если $p \neq 0$, после сокращения на p получим $\int dp = \int 2y dy$,

$$p = y^2 + C_1, \int \frac{dy}{y^2 + C_1} = \int dx, \frac{1}{C_1} \arctan \frac{y}{C_1} = x + C_2, y = C_1 t g(C_1 x + \overline{C}_2).$$

3. Уравнение $F(x, y, y', ..., y^{(n)}) = 0$ однородно относительно аргументов $y, y', ..., y^{(n)}$, то есть справедливо тождество

$$F(x,ky,ky',ky'',...,ky^{(n)}) = k^p F(x,y,y',y'',...,y^{(n)}).$$

В этом случае можно понизить порядок уравнения на единицу, вводя новую неизвестную функцию z, для которой $y = e^{\int z dx}$. Тогда $y' = e^{\int z dx} z$, $y'' = e^{\int z dx} (z^2 + z')$ и т.д.