Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ — Российский государственный технологический университет имени К. Э. Циолковского»

Ю. В. Селиванов, В. В. Дементьева

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Учебное пособие

Рекомендовано УМС МАТИ в качестве учебного пособия по высшей математике (математическому анализу) для студентов МАТИ всех форм обучения

УДК 517 ББК 22.1 C29

Авторы:

Селиванов Ю. В., д.ф.-м.н., профессор кафедры «Высшая математика»

МАТИ имени К. Э. Циолковского

Дементьева В. В., к.т.н., доцент кафедры «Высшая математика»

МАТИ имени К. Э. Циолковского

Рецензенты:

Лукацкий А. М., д.ф.-м.н., ведущий научный сотрудник ИНЭИ РАН Щетинин А. Н., к.ф.-м.н., доцент кафедры вычислительной математики и математической физики МГТУ имени Н. Э. Баумана

Селиванов, Ю. В.

С29 Дифференциальное исчисление функций нескольких переменных [Текст] : учеб. пособие / Ю. В. Селиванов, В. В. Дементьева. — М. : МАТИ, 2011. — 88 с.

ISBN 978-5-93271-612-0

Учебное пособие предназначено для студентов МАТИ, изучающих тему «Дифференциальное исчисление функций нескольких переменных» в рамках общего курса математики, а также для преподавателей. Оно ставит своей целью помочь студентам лучше усвоить теоретический и практический материал. В каждом разделе приводится решение типовых задач. Для закрепления материала студентам предлагается выполнить курсовое (контрольное) задание по рассматриваемым темам.

УДК 517 ББК 22.1

- © Селиванов Ю. В., Дементьева В. В., 2011
- © MATИ, 2011

Введение

Данное учебное пособие входит в серию учебно-методических разработок кафедры «Высшая математика», призванных способствовать овладению студентами теоретическими основами материала и появлению у них навыков решения задач по основным разделам курса высшей математики. Оно предназначено для студентов МАТИ и преподавателей. В пособии рассмотрены следующие вопросы: функции от нескольких переменных, область определения, геометрическое истолкование; частные производные первого и высших порядков; полный дифференциал и его применение; дифференцирование сложных функций; неявные функции и их дифференцирование; касательная плоскость и нормаль к поверхности; градиент функции и производная по направлению; экстремумы и нахождение наибольших и наименьших значений функций нескольких переменных. Пособие предназначено главным образом для использования во время практических занятий по математическому анализу и в качестве задачника для самостоятельной работы и курсовых (контрольных) работ для студентов дневного и вечернего отделений всех факультетов.

В первом разделе приведены некоторые основные понятия и определения, а также расчетные формулы и примеры решения задач по указанным темам, а во втором разделе помещены 37 вариантов индивидуальных расчетных заданий. Среди задач отыскание области определения функции двух переменных, вычисление частных производных и полного дифференциала, применение полного дифференциала к приближенным вычислениям, дифференцирование сложных и неявных функций, построение касательной плоскости и нормали к поверхности, вычисление производной по направлению, исследование функции нескольких переменных на экстремум, отыскание наибольшего и наименьшего значений функции в ограниченной замкнутой области.

1. ОСНОВНЫЕ ПОНЯТИЯ

1.1. Понятие функции нескольких переменных

Произвольный упорядоченный набор из n действительных чисел $x_1, x_2, ..., x_n$ обозначается $M = M\left(x_1, x_2, ..., x_n\right)$ и называется точкой n-мерного арифметического пространства \mathbb{R}^n ; сами числа $x_1, x_2, ..., x_n$ называются координатами точки M.

Пусть $D \subset \mathbb{R}^n$ — произвольное множество точек n-мерного арифметического пространства. Если каждой точке

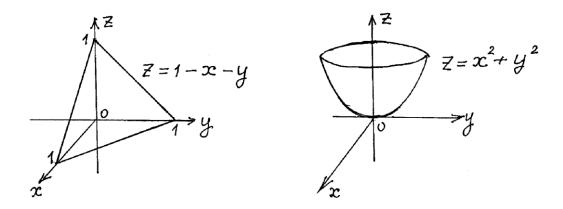
$$M(x_1, x_2, ..., x_n) \in D$$

поставлено в соответствие некоторое вполне определенное действительное число $f(M) = f\left(x_1, x_2, ..., x_n\right)$, то говорят, что на множестве D задана функция $f: D \to \mathbb{R}$ от n переменных x_1 , $x_2, ..., x_n$. Множество D называется областью определения функции f, а множество U, состоящее из всех чисел вида f(M), где $M \in D$, — множеством значений этой функции.

В частном случае, когда n=2, функция двух переменных $z=f\left(x,y\right)$ может рассматриваться как функция точек плоскости Oxy в трехмерном геометрическом пространстве с фиксированной декартовой системой координат. Графиком этой функции называется множество точек пространства

$$\Gamma = \left\{ (x, y, z) \in \mathbb{R}^3 : z = f(x, y) \right\},$$

представляющее собой некоторую поверхность в \mathbb{R}^3 . На рисунках ниже представлены графики некоторых функций.



 $\mathit{Линией\ уровня}\$ функции $z=f\left(x,\,y\right)$ называется линия

$$f(x, y) = C$$

на плоскости Oxy, в точках которой функция сохраняет постоянное значение z=C. Поверхностью уровня функции трех переменных $u=f\left(x,\,y,\,z\right)$ называется поверхность

$$f(x, y, z) = C,$$

в точках которой функция сохраняет постоянное значение u = C.

Пример 1. Найти область определения функции

$$z = \arccos(x^2 + y^2).$$

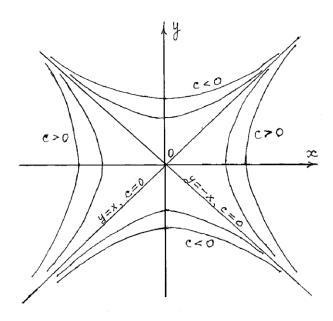
Решение. Функция определена при $x^2 + y^2 \le 1$. Следовательно, областью определения функции является замкнутый круг единичного радиуса с центром в начале координат.

Пример 2. Найти линии уровня функции $z = x^2 - y^2$.

Решение. Линии уровня (представленные на рисунке ниже) определяются уравнениями $x^2 - y^2 = C$, C = const.

При C = 0 получаем линию $x^2 - y^2 = 0$, т. е. пару прямых y = x и y = -x.

При $C \neq 0$ получаем семейство гипербол $x^2 - y^2 = C$.



Пример 3. Найти поверхности уровня функции u = 2x + 3y - z.

Решение. Поверхности уровня этой функции определяются уравнениями 2x + 3y - z = C, C = const. Это — семейство параллельных плоскостей.

1.2. Частные производные

Частные производные первого порядка

Рассмотрим функцию двух переменных z = f(x, y). Придавая значению переменной x приращение Δx , рассмотрим предел

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$

Этот предел, если он существует и конечен, называется ua-cmhoй npousbodhoй (первого порядка) данной функции по переменной x в точке (x,y) и обозначается через $f_x^{/}(x,y)$, $z_x^{/}$ или $\frac{\partial z}{\partial x}$. Аналогично определяется частная производная этой функции по переменной y и обозначается через $f_y^{/}(x,y)$, $z_y^{/}$ или $\frac{\partial z}{\partial y}$.

Частные производные вычисляются по обычным правилам и формулам дифференцирования, при этом все переменные, кроме одной, рассматриваются как постоянные («замораживаются»).

Пример 4. Найти частные производные функции

$$z = x^3y^2 + 5x^2y^3 + 4x - 3y + 2$$
.

Решение. Считая величину у постоянной, получаем

$$z_x' = 3x^2y^2 + 10xy^3 + 4$$
.

Считая величину x постоянной, получаем

$$z_y' = 2x^3y + 15x^2y^2 - 3.$$

Пример 5. Найти частные производные функции

$$z = \arcsin \frac{x}{y} \quad (y > 0).$$

Решение. Снова при дифференцировании по x мы считаем y постоянным, а при дифференцировании по y мы считаем постоянным x:

$$z_{x}' = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \frac{1}{y} = \frac{1}{\sqrt{y^{2} - x^{2}}},$$

$$z_{y}' = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^{2}}} \cdot \left(-\frac{x}{y^{2}}\right) = -\frac{x}{y} \frac{1}{\sqrt{y^{2} - x^{2}}}.$$

Пример 6. Найти частные производные функции

$$z = (x^2 + y^3)e^{xy}.$$

Решение. Имеем

$$z'_{x} = (x^{2} + y^{3})'_{x}e^{xy} + (x^{2} + y^{3})(e^{xy})'_{x} =$$

$$= 2xe^{xy} + (x^{2} + y^{3})e^{xy}y = (2x + x^{2}y + y^{4})e^{xy},$$

$$z'_{y} = (x^{2} + y^{3})'_{y}e^{xy} + (x^{2} + y^{3})(e^{xy})'_{y} =$$

$$= 3y^{2}e^{xy} + (x^{2} + y^{3})e^{xy}x = (3y^{2} + x^{3} + xy^{3})e^{xy}.$$

Частные производные высших порядков

Пусть z = f(x, y) есть функция двух переменных x и y. Частными производными *второго порядка* функции z = f(x, y) называются частные производные от ее частных производных первого порядка.

Частные производные второго порядка обозначаются следующим образом:

$$(z_x^{\prime})_x^{\prime} = z_{xx}^{\prime\prime} = f_{xx}^{\prime\prime}(x, y) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2},$$

$$(z_{x}^{\prime})_{y}^{\prime} = z_{xy}^{\prime\prime} = f_{xy}^{\prime\prime}(x, y) = \frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial^{2} z}{\partial x \partial y},$$

$$(z_{y}^{\prime})_{x}^{\prime} = z_{yx}^{\prime\prime} = f_{yx}^{\prime\prime}(x, y) = \frac{\partial^{2} f}{\partial y \partial x} = \frac{\partial^{2} z}{\partial y \partial x},$$

$$(z_{y}^{\prime})_{y}^{\prime} = z_{yy}^{\prime\prime} = f_{yy}^{\prime\prime}(x, y) = \frac{\partial^{2} f}{\partial y^{2}} = \frac{\partial^{2} z}{\partial y^{2}}.$$

Расположение символов x и y или ∂x , ∂y соответствует порядку дифференцирования.

Аналогично определяются и обозначаются частные производные более высокого порядка. Частная производная второго или более высокого порядка, взятая по нескольким различным переменным, называется смешанной частной производной. Относительно смешанных частных производных имеет место следующая теорема.

Теорема 1. Две смешанные частные производные одной и той же функции, отличающиеся лишь порядком дифференцирования, равны между собой при условии их непрерывности.

Пример 7. Найти все вторые частные производные от функции $z = \sin(xy)$.

Решение. Имеем

$$z'_{x} = y \cdot \cos(xy),$$

$$z'_{y} = x \cdot \cos(xy),$$

$$z''_{xx} = (y \cdot \cos(xy))'_{x} = -y^{2} \sin(xy),$$

$$z''_{xy} = (y \cdot \cos(xy))'_{y} = \cos(xy) - xy \cdot \sin(xy),$$

$$z_{yx}^{//} = (x \cdot \cos(xy))_{x}^{/} = \cos(xy) - xy \cdot \sin(xy),$$
$$z_{yy}^{//} = (x \cdot \cos(xy))_{y}^{/} = -x^{2} \sin(xy).$$

Пример 8. Найти частную производную $\frac{\partial^3 z}{\partial x \partial y \partial x}$ от функции $z = e^x (\cos y + x \sin y)$.

Решение. Имеем

$$\frac{\partial z}{\partial x} = e^x \left(\cos y + \sin y + x \sin y\right),$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x}\right) = e^x \left(\cos y - \sin y + x \cos y\right),$$

$$\frac{\partial^3 z}{\partial x \partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial^2 z}{\partial x \partial y}\right) = e^x \left(2\cos y - \sin y + x \cos y\right).$$

Пример 9. Пусть

$$f(x, y) = \begin{cases} xy \cdot \frac{x^2 - y^2}{x^2 + y^2}, & \text{если } x^2 + y^2 \neq 0, \\ 0, & \text{если } x = 0, y = 0. \end{cases}$$

Тогда

$$f(0, y) = f(x, 0) = 0,$$

$$\frac{\partial f}{\partial x}(0, y) = \lim_{x \to 0} \frac{f(x, y) - f(0, y)}{x} = -y,$$

$$\frac{\partial f}{\partial y}(x,0) = \lim_{y \to 0} \frac{f(x,y) - f(x,0)}{y} = x,$$

$$f_{xy}^{\prime\prime}(0,0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) (0,0) = -1,$$

$$f_{yx}^{\prime\prime}(0,0) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) (0,0) = 1.$$

Таким образом, значение второй смешанной производной в этом примере зависит от порядка дифференцирования. Это происходит из-за того, что обе производные $f_{xy}^{//}$ и $f_{yx}^{//}$ не имеют предела при $x \rightarrow 0$ и $y \rightarrow 0$, а потому, в точке (0,0) терпят разрыв.

1.3. Полный дифференциал и его применение

Пусть дана функция двух переменных z = f(x, y). Предположим, что ее аргументы x и y получают соответственно приращения Δx и Δy . Тогда функция z = f(x, y) получает полное приращение

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y).$$

Полезно отметить следующий геометрический факт: полное приращение функции Δz равно приращению аппликаты графика функции z = f(x, y) при переходе от точки M(x, y) в точку $M_1(x + \Delta x, y + \Delta y)$.

Функция $z = f\left(x,y\right)$ называется дифференцируемой в точке $\left(x,y\right)$, если ее полное приращение Δz может быть представлено в виде $\Delta z = A\!\left(x,y\right)\!\cdot\!\Delta x + B\!\left(x,y\right)\!\cdot\!\Delta y + o\!\left(\rho\right)$, где

$$\rho = \sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2},$$

а $o(\rho)$ — бесконечно малая более высокого порядка, чем ρ . Если функция z = f(x, y) дифференцируема в данной точке, то ее полным дифференциалом (или просто дифференциалом) в точке (x, y) называется главная часть полного приращения этой функции, линейная относительно Δx и Δy , т. е.

$$dz = A(x, y) \cdot \Delta x + B(x, y) \cdot \Delta y.$$

Заметим, что при малых значениях Δx и Δy дифференциал dz дает основной вклад в приращение Δz .

Легко доказать, что если функция z = f(x, y) дифференцируема в точке (x, y), то имеют место равенства

$$A(x, y) = \frac{\partial z}{\partial x}(x, y) = f_x'(x, y),$$

$$B(x, y) = \frac{\partial z}{\partial y}(x, y) = f'_y(x, y).$$

Отсюда следует, что для дифференциала функции z = f(x, y) справедлива формула

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y.$$

Дифференциалами dx и dy независимых переменных x и y называются их приращения Δx и Δy , т. е. $dx = \Delta x$, $dy = \Delta y$. Таким образом, мы вправе написать, что

$$dz = f_x'(x, y) dx + f_y'(x, y) dy.$$

Замечание. Важно отметить, что из существования частных про- изводных первого порядка, вообще говоря, не следует существование полного дифференциала (т. е. дифференцируемость функции нескольких переменных). Однако если предположить, что эти частные производные не только существуют, но и непрерывны в окрестности точки (x, y), то функция z = f(x, y) в этой точке дифференцируема. В то же время даже из дифференцируемости всюду функции нескольких переменных, вообще говоря, не следует непрерывность ее первых частных производных.

При достаточно малых Δx и Δy полное приращение функции можно со сколь угодно малой относительной погрешностью заменить ее полным дифференциалом:

$$\Delta z \approx dz = f_x'(x, y) \Delta x + f_y'(x, y) \Delta y.$$

Вычисление дифференциала функции значительно проще, чем вычисление ее приращения. Поэтому указанное приближенное равенство может быть использовано для приближенных вычислений.

Как следствие, мы получаем приближенное равенство

$$f(x+\Delta x, y+\Delta y) \approx f(x, y)+dz = f(x, y)+f'_x(x, y)\Delta x+f'_y(x, y)\Delta y.$$

Все изложенное распространяется на функции трех и более переменных.

Пример 10. Даны две точки M(3;4) и N(3,05;4,1). Вычислить приближенное значение функции z=xy в точке N, заменив приращение функции при переходе от точки M к точке N полным дифференциалом.

Решение. Имеем

$$z(M) = 3.4 = 12$$
,

$$dz = f_x^{/}(3,4) \cdot \Delta x + f_y^{/}(3,4) \cdot \Delta y = 4 \cdot 0,05 + 3 \cdot 0,1 = 0,5,$$

где
$$f_x'(3,4) = y = 4$$
, $f_y'(3,4) = x = 3$, $\Delta x = 0.05$, $\Delta y = 0.1$.

Используя приближенную формулу для приращения функции, получаем

$$z(N) = z(M) + \Delta z \approx z(M) + dz = 12 + 0.5 = 12.5$$
.

Поскольку точное значение z(N) равно 12,505, приближенная формула дала ответ с погрешностью 0,005.

Пример 11. Вычислить приближенно

$$\ln\left(\sqrt{4,004} + \sqrt[3]{1,006} - 2\right).$$

Решение. Искомое число будем рассматривать как значение функции

$$f(x, y) = \ln(\sqrt{x} + \sqrt[3]{y} - 2)$$

при $x=x_0+\Delta x$, $y=y_0+\Delta y$, где $x_0=4$, $y_0=1$, $\Delta x=0{,}004$, $\Delta y=0{,}006$. Применяя формулу

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y,$$

получаем

$$f(x_0, y_0) = \ln(\sqrt{x_0} + \sqrt[3]{y_0} - 2) = \ln(\sqrt{4} + \sqrt[3]{1} - 2) = 0,$$

$$f_x'(x_0, y_0) = \frac{1}{\sqrt{x_0 + \sqrt[3]{y_0} - 2}} \cdot \frac{1}{2\sqrt{x_0}} = \frac{1}{\sqrt{4 + \sqrt[3]{1} - 2}} \cdot \frac{1}{2\sqrt{4}} = \frac{1}{4}$$

$$f_{y}'(x_{0}, y_{0}) = \frac{1}{\sqrt{x_{0}} + \sqrt[3]{y_{0}} - 2} \cdot \frac{1}{3 \cdot \sqrt[3]{y_{0}^{2}}} = \frac{1}{\sqrt{4} + \sqrt[3]{1} - 2} \cdot \frac{1}{3 \cdot \sqrt[3]{1}} = \frac{1}{3},$$

$$f(x, y) \approx 0 + \frac{1}{4} \cdot 0,004 + \frac{1}{3} \cdot 0,006 = 0,003.$$

Следовательно,

$$\ln\left(\sqrt{4,004} + \sqrt[3]{1,006} - 2\right) \approx 0,003.$$

1.4. Дифференцирование сложных функций

Случай одной независимой переменной

Пусть z = f(x, y) — дифференцируемая функция двух переменных x и y, причем аргументы этой функции являются дифференцируемыми функциями одной независимой переменной t, т. е. $x = \varphi(t)$ и $y = \psi(t)$. Тогда сложная функция

$$z = f(\varphi(t), \psi(t))$$

тоже дифференцируема, и ее производная $\frac{dz}{dt}$ вычисляется по формуле

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}.$$

Пусть теперь z = f(x, y), и пусть $y = \varphi(x)$. Тогда $z = f(x, \varphi(x))$, т. е. функция z есть функция одной переменной x. Этот случай сводится к предыдущему, где роль переменной t играет x. Полная производная функции z по переменной x равна

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}.$$

Пример 12. Найти $\frac{dz}{dt}$, если $z = e^{2x+5y}$, где $x = \sin t$, $y = t^3$.

Решение. Имеем

$$\frac{\partial z}{\partial x} = 2e^{2x+5y}, \quad \frac{\partial z}{\partial y} = 5e^{2x+5y},$$
$$\frac{dx}{dt} = \cos t, \quad \frac{dy}{dt} = 3t^2;$$

$$\frac{dz}{dt} = 2e^{2x+5y} \cdot \cos t + 5e^{2x+5y} \cdot 3t^2 = (2\cos t + 15t^2) \cdot e^{2\sin t + 5t^3}.$$

Пример 13. Найти частную производную $\frac{\partial z}{\partial x}$ и полную производную $\frac{dz}{dx}$, если $z = e^{3xy}$, а $y = \sqrt{x^2 + 4}$.

Решение. Имеем
$$\frac{\partial z}{\partial x} = 3ye^{3xy}$$
, $\frac{\partial z}{\partial y} = 3xe^{3xy}$, $\frac{dy}{dx} = \frac{x}{\sqrt{x^2 + 4}}$,

$$\frac{dz}{dx} = 3ye^{3xy} + 3xe^{3xy} \cdot \frac{x}{\sqrt{x^2 + 4}} = \frac{6x^2 + 12}{\sqrt{x^2 + 4}} \cdot e^{3x\sqrt{x^2 + 4}}.$$

Случай нескольких независимых переменных

Предположим теперь, что z = f(x, y), где $x = \varphi(u, v)$ и $y = \psi(u, v)$. Тогда z есть сложная функция двух независимых переменных u и v. Частные производные этой сложной функции находятся по формулам

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \qquad \text{II} \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}.$$

Эти формулы обобщаются на случай сложной функции любого конечного числа аргументов.

Пример 14. Найти частные производные $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$, если $z = y^x$, $x = \frac{u}{v}$, $y = u \cdot v$.

Решение. Имеем

$$\frac{\partial z}{\partial x} = y^x \ln y, \quad \frac{\partial z}{\partial y} = xy^{x-1};$$

$$\frac{\partial x}{\partial u} = \frac{1}{v}, \quad \frac{\partial x}{\partial v} = -\frac{u}{v^2}, \quad \frac{\partial y}{\partial u} = v, \quad \frac{\partial y}{\partial v} = u;$$

$$\frac{\partial z}{\partial u} = y^x \ln y \cdot \frac{1}{v} + xy^{x-1} \cdot v = \frac{\left(1 + \ln \left(u \cdot v\right)\right)}{v} \cdot \left(u \cdot v\right)^{\frac{u}{v}},$$

$$\frac{\partial z}{\partial v} = y^x \ln y \cdot \left(-\frac{u}{v^2}\right) + xy^{x-1} \cdot u = \frac{u\left(1 - \ln \left(u \cdot v\right)\right)}{v^2} \cdot \left(u \cdot v\right)^{\frac{u}{v}}.$$

1.5. Неявные функции и их дифференцирование

Пусть F(x, y) — дифференцируемая функция двух переменных x и y, и пусть уравнение F(x, y) = 0 определяет y как функцию x. Первая производная этой неявной функции y = y(x) в точке x_0 может быть вычислена по формуле

$$\frac{dy}{dx}\Big|_{x=x_0} = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}$$

при условии, что $F_y'(x_0, y_0) \neq 0$, где $y_0 = y(x_0)$ и $F(x_0, y_0) = 0$. Производные высших порядков вычисляются последовательным дифференцированием этой формулы.

Пусть теперь F(x,y,z) — дифференцируемая функция трех переменных x, y и z, и пусть уравнение F(x,y,z) = 0 определяет z как функцию независимых переменных x и y. Частные производные этой неявной функции z = z(x,y) в точке (x_0,y_0) могут быть вычислены по формулам

$$\frac{\partial z}{\partial x}(x_0, y_0) = -\frac{F_x'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}, \quad \frac{\partial z}{\partial y}(x_0, y_0) = -\frac{F_y'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}$$

при условии, что $F_z'(x_0, y_0, z_0) \neq 0$, где $z_0 = z(x_0, y_0)$ и $F(x_0, y_0, z_0) = 0$.

Пример 15. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, если z определяется, как функция от x и y, из уравнения

$$z^3 - 4xy^2 - 2z^2 + 1 = 0$$
.

Решение. Обозначим левую часть данного уравнения через F(x, y, z). Тогда

$$F_{x}(x, y, z) = -4y^{2},$$

$$F_y'(x, y, z) = -8xy,$$

$$F_z'(x, y, z) = 3z^2 - 4z$$
.

Отсюда получаем

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x, y, z)}{F_z'(x, y, z)} = \frac{4y^2}{3z^2 - 4z},$$

$$\frac{\partial z}{\partial y} = -\frac{F_y'(x, y, z)}{F_z'(x, y, z)} = \frac{8xy}{3z^2 - 4z}.$$

1.6. Касательная плоскость и нормаль к поверхности

Касательной плоскостью к поверхности в ее точке M_0 называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку. Точка M_0 называется точкой касания. Нормалью к поверхности называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Если поверхность задана уравнением F(x,y,z)=0, то уравнение касательной плоскости в точке $M_0(x_0,y_0,z_0)$ поверхности имеет вид

$$F'_{x}(M_{0})\cdot(x-x_{0})+F'_{y}(M_{0})\cdot(y-y_{0})+F'_{z}(M_{0})\cdot(z-z_{0})=0,$$

где x, y, z — координаты текущей точки касательной плоскости, x_0 , y_0 , z_0 — координаты точки касания $M_0(x_0, y_0, z_0)$.

Нормаль к поверхности в точке $M_0(x_0,y_0,z_0)$ определяется уравнением

$$\frac{x - x_0}{F_x'(M_0)} = \frac{y - y_0}{F_y'(M_0)} = \frac{z - z_0}{F_z'(M_0)}.$$

В случае задания поверхности в явной форме $z=f\left(x,y\right)$ уравнение касательной плоскости в точке $M_0\left(x_0,y_0,z_0\right)$ имеет вид

$$z - z_0 = f'_x(x_0, y_0) \cdot (x - x_0) + f'_y(x_0, y_0) \cdot (y - y_0),$$

а уравнение нормали —

$$\frac{x - x_0}{f_x'(x_0, y_0)} = \frac{y - y_0}{f_y'(x_0, y_0)} = \frac{z - z_0}{-1}.$$

Пример 16. Составить уравнения нормали и касательной плоскости к поверхности $z = e^{x \cos y}$ в точке $M_0(1, \pi, 1/e)$.

Решение. Начнем с нахождения частных производных функции $f(x, y) = e^{x \cos y}$ и их значений в точке $(1, \pi)$:

$$f_x' = e^{x \cos y} \cdot \cos y, \quad f_x'(1, \pi) = e^{\cos \pi} \cdot \cos \pi = -e^{-1},$$

 $f_y' = -e^{x \cos y} \cdot x \sin y, \quad f_y'(1, \pi) = -e^{\cos \pi} \cdot 1 \cdot \sin \pi = 0.$

Напишем уравнение касательной плоскости:

$$z - e^{-1} = -e^{-1} \cdot (x - 1) + 0 \cdot (y - \pi)$$

ИЛИ

$$x + ez - 2 = 0$$
.

Теперь напишем уравнение нормали:

$$\frac{x-1}{-e^{-1}} = \frac{y-\pi}{0} = \frac{z-e^{-1}}{-1}$$

ИЛИ

$$\frac{x-1}{1} = \frac{y-\pi}{0} = \frac{z-1/e}{e}$$
.

Пример 17. Составить уравнения нормали и касательной плоскости к поверхности

$$\sqrt{x^2 + y^2 + z^2} + 4 = x + y + z$$

в точке $M_0(2,3,6)$.

Решение. Наша поверхность может быть задана уравнением F(x, y, z) = 0, где

$$F(x, y, z) = \sqrt{x^2 + y^2 + z^2} + 4 - x - y - z.$$

Найдем частные производные функции F(x, y, z) и их значения в точке M_0 :

$$F_x' = \frac{x}{\sqrt{x^2 + y^2 + z^2}} - 1$$
, $F_x'(2, 3, 6) = \frac{2}{7} - 1 = -\frac{5}{7}$,

$$F_y' = \frac{y}{\sqrt{x^2 + y^2 + z^2}} - 1$$
, $F_y'(2, 3, 6) = \frac{3}{7} - 1 = -\frac{4}{7}$,

$$F_z' = \frac{z}{\sqrt{x^2 + y^2 + z^2}} - 1$$
, $F_z'(2, 3, 6) = \frac{6}{7} - 1 = -\frac{1}{7}$.

Напишем уравнение касательной плоскости:

$$-\frac{5}{7}(x-2)-\frac{4}{7}(y-3)-\frac{1}{7}(z-6)=0$$

$$5x + 4y + z - 28 = 0$$
.

Теперь напишем уравнение нормали:

$$\frac{x-2}{5} = \frac{y-3}{4} = \frac{z-6}{1}$$
.

1.7. Производная по заданному направлению. Градиент

Пусть задана дифференцируемая функция двух переменных z = f(x, y). Рассмотрим в области определения этой функции любую точку M(x, y), и рассмотрим на плоскости Oxy любую направленную прямую (ось) l, проходящую через эту точку.

Пусть $M_1(x+\Delta x,y+\Delta y)$ — любая другая точка этой оси, а Δl — длина отрезка между M и M_1 , взятая с надлежащим знаком, именно со знаком плюс, если направление MM_1 совпадает с направлением оси l, и со знаком минус — в противном случае.

Пусть M_1 неограниченно приближается к M. Производной от функции $z=f(x,\,y)$ в точке M по направлению l называется предел

$$\frac{\partial z}{\partial l} = \lim_{M_1 \to M} \frac{f(M_1) - f(M)}{\Delta l} = \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l},$$

где
$$\Delta l = \pm |MM_1| = \pm \sqrt{(\Delta x)^2 + (\Delta y)^2}$$
.

Производная функции по направлению характеризует «скорость изменения» функции в этом направлении.

Можно доказать, что производная дифференцируемой функции z = f(x, y) по направлению l существует и выражается формулой

$$\frac{\partial z}{\partial l} = f_x^{\prime}(x, y) \cos \alpha + f_y^{\prime}(x, y) \sin \alpha,$$

где α — угол, образованный осью l с осью координат Ox.

В случае функции трех переменных u = f(x, y, z) производная по заданному направлению определяется аналогично. Соответствующая формула для ее вычисления имеет вид

$$\frac{\partial z}{\partial l} = f_x^{\prime}(x, y, z) \cos \alpha + f_y^{\prime}(x, y, z) \cos \beta + f_z^{\prime}(x, y, z) \cos \gamma,$$

где α , β , γ — углы, образованные осью l с осями координат.

Градиентом функции z = f(x, y) в точке M(x, y) называется вектор, выходящий из точки M и имеющий своими координатами частные производные функции z:

grad
$$z = \frac{\partial z}{\partial x} \, \overline{i} + \frac{\partial z}{\partial y} \, \overline{j}$$
.

В случае функции u = f(x, y, z) градиент функции равен

grad
$$u = \frac{\partial u}{\partial x} \, \overline{i} + \frac{\partial u}{\partial y} \, \overline{j} + \frac{\partial u}{\partial z} \, \overline{k}$$
.

Можно показать, что градиент есть вектор, указывающий направление наиболее быстрого возрастания функции в данной точке и имеющий модуль, равный скорости этого возрастания. Кроме того, градиент функции и производная по направлению l связаны формулой

$$\frac{\partial f}{\partial l} = \pi p_l \operatorname{grad} z$$
.

Пример 18. Найти производную функции $z = x^2 - xy + 2y^2 + 1$ в точке M(1,1) по направлению вектора $\overline{a} = 6\overline{i} + 8\overline{j}$.

Решение. Находим единичный вектор, соответствующий вектору направления:

$$\overline{e} = \frac{\overline{a}}{|\overline{a}|} = \frac{6\overline{i} + 8\overline{j}}{\sqrt{6^2 + 8^2}} = 0,6\overline{i} + 0,8\overline{j}.$$

Отсюда получаем, что $\cos \alpha = 0.6$ и $\sin \alpha = 0.8$.

Теперь найдем значения частных производных функции

$$z = x^2 - xy + 2y^2 + 1$$

в точке M(1,1):

$$\frac{\partial z}{\partial x} = 2x - y$$
, $\frac{\partial z}{\partial y} = 4y - x$; $\frac{\partial z}{\partial x}(1, 1) = 1$, $\frac{\partial z}{\partial y}(1, 1) = 3$.

Подставляя найденные значения в формулу для вычисления производной по направлению, получаем:

$$\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \sin \alpha = 1.0, 6 + 3.0, 8 = 3.$$

Пример 19. Найти направление наиболее быстрого возрастания функции $z = 3x^2 - y^2 - 2$ в точке M(-1, 2). Какова скорость изменения функции в этом направлении?

Решение. Направление наиболее быстрого возрастания функции указывает вектор

grad
$$z = \frac{\partial z}{\partial x} \, \overline{i} + \frac{\partial z}{\partial y} \, \overline{j} = 6x\overline{i} - 2y\overline{j} = -6\overline{i} - 4\overline{j}$$
.

Скорость изменения функции в направлении градиента (наибольшая скорость возрастания функции) равна модулю градиента этой функции. Находим

$$\max \frac{\partial u}{\partial l} = |\operatorname{grad} u| = \sqrt{(-6)^2 + (-4)^2} = \sqrt{52}$$
.

1.8. Экстремум функции двух переменных

Говорят, что функция $z = f\left(x,y\right)$ имеет локальный максимум (соотв., локальный минимум) в точке $M_0(x_0,y_0)$, если существует такая окрестность точки M_0 , для всех точек $M\left(x,y\right)$ которой выполняется неравенство $f\left(M_0\right) \geq f\left(M\right)$ (соотв., $f\left(M_0\right) \leq f\left(M\right)$). (Локальный) максимум или минимум функции называется ее (локальным) экстремумом. Точка M_0 , в которой функция имеет экстремум, называется точкой экстремума. Справедлива следующая теорема.

Теорема 2 (необходимые условия экстремума). Если функция z = f(x, y) имеет в точке $M_0(x_0, y_0)$ экстремум, то каждая частная производная первого порядка от f(x, y) или обращается в нуль, или не существует в этой точке.

Точки, в которых выполнены эти условия (т. е. в которых каждая частная производная первого порядка или обращается в нуль, или не существует), называются критическими точками.

Пример 20. Функция $z = 4 - \sqrt{x^2 + y^2}$ имеет максимум в точке (0,0), поскольку z(0,0) = 4 и z(x,y) < 4 при $x^2 + y^2 > 0$. При этом первые частные производные этой функции в точке (0,0) не существуют.

Однако не всякая критическая точка функции является ее точкой экстремума. Поэтому для нахождения экстремумов функции необходимо каждую критическую точку функции исследовать дополнительно.

Пример 21. Пусть дана функция $z = x^2 - y^2$. Найдем ее критические точки. Имеем

$$\begin{cases} z_x' = 2x = 0, \\ z_y' = -2y = 0. \end{cases}$$

Решая эту систему, получаем x = 0 и y = 0.

Итак, найдена единственная критическая точка $M_0(0,0)$. Значение нашей функции $z=x^2-y^2$ в точке M_0 равно 0. Но в любой окрестности этой точки функция принимает как положительные, так и отрицательные значения: действительно, если |x|<|y|, то z<0; если же |x|>|y|, то z>0. Следовательно, в критической точке M_0 функция $z=x^2-y^2$ экстремума не имеет.

Теорема 3 (достаточные условия экстремума). Пусть в некоторой окрестности точки $M_0(x_0, y_0)$, являющейся критической точкой функции z = f(x, y), эта функция имеет непрерывные частные производные до второго порядка включительно. Обозначим $f''_{xx}(x_0, y_0) = A$, $f''_{xy}(x_0, y_0) = B$, $f''_{yy}(x_0, y_0) = C$. Тогда:

- 1) если $AC B^2 > 0$ и A < 0, то функция f(x, y) имеет в точке M_0 максимум;
- 2) если $AC B^2 > 0$ и A > 0, то функция f(x, y) имеет в точке M_0 минимум;
- 3) если $AC B^2 < 0$, то функция f(x,y) в точке M_0 экстремума не имеет;

4) если $AC - B^2 = 0$, то вопрос об экстремуме в точке M_0 остается открытым (требуются дополнительные исследования).

Пример 22. Исследовать на экстремум функцию

$$z = x^3 + y^3 - 3xy + 4.$$

Решение. Имеем

$$\frac{\partial z}{\partial x} = 3x^2 - 3y$$
, $\frac{\partial z}{\partial y} = 3y^2 - 3x$,

$$\frac{\partial^2 z}{\partial x^2} = 6x, \quad \frac{\partial^2 z}{\partial x \partial y} = -3, \quad \frac{\partial^2 z}{\partial y^2} = 6y.$$

Для определения критических точек функции составляем систему уравнений

$$\begin{cases} 3x^2 - 3y = 0, \\ 3y^2 - 3x = 0. \end{cases}$$

Решая эту систему, получаем точки $M_1(0,0)$ и $M_2(1,1)$.

Для точки M_1 имеем $AC-B^2=-9<0$. Как следствие, экстремума в точке M_1 нет.

Для точки M_2 имеем $AC-B^2=27>0$, а A=6>0. Значит, в точке M_2 функция имеет минимум $z_{\min}=z(1,1)=3$.

1.9. Наибольшее и наименьшее значения функции

Пусть функция z = f(x, y) непрерывна в некоторой ограниченной замкнутой области D и, за исключением, быть может, отдельных точек, имеет в этой области конечные частные

производные первого порядка. Тогда в этой области найдется точка (x_0, y_0) , в которой функция получает наибольшее (наименьшее) из всех значений. Если точка (x_0, y_0) лежит внутри области D, то в ней функция, очевидно, имеет локальный экстремум. Таким образом, интересующая нас точка оказывается критической точкой, т. е. такой точкой области D, в которой каждая частная производная первого порядка или обращается в нуль, или не существует. Однако следует отметить, что функция может достигать своего наибольшего (наименьшего) значения и в граничных точках области. Поэтому нужно отдельно найти наибольшее и наименьшее значения функции на границе области D. При этом можно использовать уравнения границы области, что позволит уменьшить число независимых переменных у функции и свести задачу к исследованию функции одной переменной.

Таким образом, для того чтобы найти наибольшее и наименьшее значения функции $z = f\left(x,\,y\right)$ в области D , нужно:

- 1) найти все критические (внутренние) точки области и вычислить значения функции в этих точках;
- 2) найти наибольшее и наименьшее значения функции на границе ∂D области D;
- 3) сравнивая все полученные таким образом значения функции, выбрать из них наибольшее и наименьшее.

Пример 23. Найти наибольшее и наименьшее значения функции $z = x^2 - y^2 + 2a^2$ в круге $x^2 + y^2 \le a^2$.

Решение. Начнем с нахождения первых частных производных исследуемой функции. Имеем $\frac{\partial z}{\partial x} = 2x$, $\frac{\partial z}{\partial y} = -2y$. Решая систему уравнений

$$\begin{cases} 2x = 0, \\ -2y = 0, \end{cases}$$

находим одну критическую точку $M_0(0,0)$, в которой

$$z(M_0) = 2a^2.$$

Найдем теперь наибольшее и наименьшее значения функции на границе, то есть на окружности $x^2 + y^2 = a^2$. Для точек этой окружности исследуемую функцию можно представить как функцию одной переменной x. Поскольку $y^2 = a^2 - x^2$, то

$$z = x^2 - (a^2 - x^2) + 2a^2 = 2x^2 + a^2$$
,

причем $-a \le x \le a$. Таким образом, наша задача сводится к нахождению наибольшего и наименьшего значений функции одной переменной $z = 2x^2 + a^2$ на отрезке [-a, a].

Найдем критические точки функции $z=2x^2+a^2$, принадлежащие интервалу (-a, a), и вычислим ее значения в этих точках и на концах интервала. Поскольку z'=4x, решая уравнение 4x=0, получаем x=0 и $z=a^2$.

Далее, находим $z(-a) = 3a^2$ и $z(a) = 3a^2$.

Итак, функция $z=x^2-y^2+2a^2$ достигает наибольшего значения, равного $3a^2$, в точках $M_1(-a,0)$ и $M_2(a,0)$ окружности $x^2+y^2=a^2$ и наименьшего значения, равного a^2 , в точках $M_3(0,-a)$ и $M_4(0,a)$ той же окружности.

Пример 24. Найти наибольшее и наименьшее значения функции $z = 3x^2 - 4xy - 2x + 4y - 5$ в заданной ограниченной замкнутой области: $0 \le x \le 3$, $0 \le y \le 3 - x$.

Решение. Найдем первые частные производные исследуемой функции. Имеем

$$\frac{\partial z}{\partial x} = 6x - 4y - 2$$
, $\frac{\partial z}{\partial y} = -4x + 4$.

Для нахождения критических точек функции составляем систему уравнений

$$\begin{cases} 6x - 4y - 2 = 0, \\ -4x + 4 = 0. \end{cases}$$

Решая эту систему, получаем точку $M_0(1,1)$, которая лежит внутри заданной области.

Перейдем теперь к поиску «особенных» точек на границе области.

1) На отрезке $y = 0 \ (0 \le x \le 3)$ имеем

$$z = z(x, 0) = 3x^2 - 2x - 5$$
.

В этом случае z'=6x-2 и, решая уравнение 6x-2=0, получаем $x=\frac{1}{3}\in (0,3)$. Зафиксируем точку $M_1\!\left(\frac{1}{3},0\right)$ для дальнейших рассуждений.

2) На отрезке $x = 0 \ (0 \le y \le 3)$ имеем

$$z = z(0, y) = 4y - 5.$$

Эта функция в интервале (0,3) не имеет точек экстремума.

3) На отрезке $y = 3 - x \ (0 \le x \le 3)$ имеем

$$z = z(x, 3-x) = 3x^2 - 4x(3-x) - 2x + 4(3-x) - 5$$

ИЛИ

$$z = 7x^2 - 18x + 7.$$

В этом случае z'=14x-18. Решая уравнение 14x-18=0, получаем $x=\frac{9}{7}\in \left(0,3\right)$. Поэтому зафиксируем также точку $M_2\left(\frac{9}{7},\frac{12}{7}\right)$.

4) Необходимо еще отметить точки «стыка» на границе нашей области: $M_3(0,0)$, $M_4(3,0)$ и $M_5(0,3)$.

Вычисляя значения функции $z = 3x^2 - 4xy - 2x + 4y - 5$ в отобранных точках, получаем:

$$z(M_0) = -4$$
, $z(M_1) = -\frac{16}{3}$, $z(M_2) = -\frac{32}{7}$, $z(M_3) = -5$, $z(M_4) = 16$, $z(M_5) = 7$.

Отсюда получаем, что наша функция достигает наибольшего значения, равного 16, в точке $M_4(3,0)$ и наименьшего значения, равного $-\frac{16}{3}$, в точке $M_1\!\left(\frac{1}{3},0\right)$.

2. ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

Вариант 1

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \ln \frac{x^2}{x+y}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \operatorname{arctg} \frac{xy}{1+x^2}$$
.

Задача 3. Найти полный дифференциал функции

$$z = x \operatorname{ctg} y + \ln y \cdot \operatorname{tg} x$$
.

Задача 4. Вычислить $(1,001)^2 \cdot \frac{1}{\sqrt{0,98}}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\sqrt{x} + \ln y = \arctan(xy)$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $3^{xy} - \ln(y^4 + z^2) = x$.

Задача 7. Вычислить производные сложной функции:

$$z = x \sin y + y \cos x$$
, где $x = \frac{u}{v}$, $y = u^3 v^2$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^2y^2 - 1$ в точке $M_0(-1, 1, 0)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = e^{x^2y-1}$ в точке A(1,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^2 + 2xy - 3y^2 + 1$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 - 6x + 4y + 2$ в прямоугольнике с вершинами:

$$A(1,-3); B(1,2); C(4,2); D(4,-3).$$

Вариант 2

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \sqrt{\ln(x+y)}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln\left(x + \sqrt{x^2 + y^2}\right).$$

Задача 3. Найти полный дифференциал функции

$$z = \sin x + y \cdot e^{x/y}.$$

Задача 4. Вычислить $(0,97)^{2,02}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x \sin y - \cos y + \cos 2y = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $2x^3 - 5x + z^3 + y^3 - 3xyz + 8 = 0$.

Задача 7. Вычислить производную сложной функции:

$$z = e^{4xy}$$
, где $x = \cos(1-t)$, $y = \sin t^2$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2y^3z^2+1=0$ в точке $M_0(-1,-1,-1)$.

Задача 9. Найти производную функции $z = \arctan(x - y)$ в точке A(1,0) по направлению к точке B(2,1).

Задача 10. Исследовать функцию $z = 2xy - 3x^2 - 2y^2 + 8$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 6xy - 9x^2 - 9y^2 + 4(x+y)$ в прямоугольнике, ограниченном прямыми: x = 0, x = 1, y = 0, y = 2.

Вариант 3

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \ln \frac{\cos x}{v}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln(x^5 + \ln y).$$

Задача 3. Найти полный дифференциал функции

$$z = \arccos y \cdot 2^{x^2}$$
.

Задача 4. Вычислить $\ln(0.01 + \sqrt{0.01^2 + 1.02^2})$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $1 + xy - \ln(e^{xy} + e^{-xy}) = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $\frac{\operatorname{tg}(z+1)}{\operatorname{tg}(y-2)} = \frac{y-x}{z+1}$.

Задача 7. Вычислить производную сложной функции:

$$z = x^2 - y^2 + 2xy$$
, где $x = \sin t$, $y = \arccos e^t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = 2x^2y^2 + 2xy + 1$ в точке $M_0(-1, 1, 1)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \arctan \frac{x}{y}$ в точке A(1,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^2 + xy - 4x + 8y$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 3x^2 + 3y^2 - 2x - 2y + 2$ в треугольнике, ограниченном прямыми: x = 0, y = 0, y = 1 - x.

Вариант 4

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \ln \frac{x-3}{y-5}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arccos \frac{2y+3}{x}$$
.

Задача 3. Найти полный дифференциал функции

$$z = \ln\left(\sqrt{x} + 2^{\cos y}\right).$$

Задача 4. Вычислить $1,002 \cdot (2,003)^2$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $y \sin x - tg(y-x) = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $y \cdot e^{x-yz} = \cos(xz)$.

Задача 7. Вычислить производную сложной функции:

$$z = (x + y^3) \cdot e^{x^2 + y^2}$$
, где $x = \cos(t^2)$, $y = \sqrt{t}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности

$$3x^2 + y^2 + 2z^2 - 2x - x^2y - 3y = 0$$

в точке $M_0(1,1,1)$.

Задача 9. Найти производную функции $z = \frac{1}{2} \ln(x^2 + y)$ в точке A(1,0) по направлению к точке B(0,1).

Задача 10. Исследовать функцию $z = x^2 + xy + y^2 + x + y - 1$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 - xy + y^2$ в заданной области: $|x| + |y| \le 1$.

Вариант 5

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \ln(y - \sin x)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = xy^2 \ln(x^2 + y).$$

Задача 3. Найти полный дифференциал функции

$$z = \cos y + y \cdot e^{x}$$
.

Задача 4. Вычислить $(3,004)^3 \cdot 0,001$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$\ln\sqrt{x^2 + y^2} = \arctan(xy).$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x\sin y + y\sin x + z\sin x - 8 = 0.$$

Задача 7. Вычислить производную сложной функции:

$$z = \arcsin \frac{x^2}{y}$$
, где $x = \sin t$, $y = \cos^2 \frac{t}{2}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^3y^2 - 2x + 1$ в точке $M_0(1, 1, 0)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \ln(1 + x^2 y)$ в точке A(2, 0). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = 3x + 6y - x^2 - xy - y^2$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 3x^2 + 3y^2 - x - y + 1$ в треугольнике, ограниченном прямыми: x = 5, y = 0, x - y = 1.

Вариант 6

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \sqrt{1-x^3} + \ln(y^2-1)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \left(1 + \frac{\ln x}{\ln y}\right)^3.$$

Задача 3. Найти полный дифференциал функции

$$z = \sqrt{2xy + \cos\frac{x}{y}}.$$

Задача 4. Вычислить $\sqrt[3]{0.97 \cdot \sqrt[4]{(1.05)^3}}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\sin x \cdot \ln y + \cos y \cdot \ln x = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $3xz - 4yz + z^2 - 9 = 0$.

Задача 7. Вычислить производные сложной функции:

$$z = \frac{1}{\sqrt{x^2 + y^2}}$$
, где $x = v - u^2 v$, $y = u + v^2 u$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности

$$x^2 + 2y^2 + 3z^2 - 3x - x^2y - 2y = 0$$

в точке $M_0(1,1,1)$.

Задача 9. Найти производную функции $z = \arctan(x^2y)$ в точке A(1,1) по направлению к точке B(4,3).

Задача 10. Исследовать функцию $z = x^2 + xy + y^2 - 6x - 9y$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 - 12x + 16y$ в заданной области: $x^2 + y^2 \le 25$.

Вариант 7

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \sqrt{\ln xy}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln(\sin x + \cos y)$$
.

Задача 3. Найти полный дифференциал функции

$$z = e^{\cos y} \operatorname{arctg} x$$
.

Задача 4. Вычислить $\sqrt{\left(1{,}02\right)^3 + \left(1{,}97\right)^3}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\ln(x^2 - \lg y) = e^{y+1}$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$z^2 - z - 8xz + 2x^2 + 2y^2 + 8 = 0$$
.

Задача 7. Вычислить производные сложной функции:

$$z = \operatorname{arctg} \frac{x}{\sqrt{y}}$$
, где $y = \sqrt{x^2 + 1}$; $\frac{\partial z}{\partial x}$, $\frac{dz}{dx} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^2(y+1)^2$ в точке $M_0(1,0,1)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \operatorname{tg} \frac{x}{y}$ в точке A(0,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = 3x^2 - x^3 + 3y^2 + 4y - 2$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + xy - 2$ в заданной области: $y \ge 4x^2 - 4$, $y \le 0$.

Вариант 8

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{\ln(x^2 y)}{\sqrt{y-x}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln\left(\sqrt[3]{y} - \sin x\right).$$

Задача 3. Найти полный дифференциал функции

$$z = e^{\operatorname{tg} x} \cos 3y$$
.

Задача 4. Вычислить $\sqrt{(6,03)^2 + (8,04)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$x^2 - y^2 + \arctan(xy) = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$yz^2 + xz + xy = 1.$$

Задача 7. Вычислить производную сложной функции:

$$z = \frac{4y}{\sqrt{y^2 - x}}$$
, где $x = t \cos t$, $y = t \sin t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $2x^2+3y^2+4z^2-x^2y-y^3-3z^3-4=0$ в точке $M_0(1,1,1)$.

Задача 9. Найти производную функции $z = \frac{1}{2}(x^2 + y)$ в точке A(1,1) по направлению к точке B(2,2).

Задача 10. Исследовать функцию $z = x^3 + 3y^2 - 12x + 6y - 2$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + 3y^2 + x - y$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y = 0, x + y = 1.

Вариант 9

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{\sqrt{\cos x - y}}{\sqrt{y}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln\left(x\sqrt{y} + \frac{y}{2x}\right).$$

Задача 3. Найти полный дифференциал функции $z = \arctan \frac{x}{x+y}$.

Задача 4. Вычислить $(3,001)^2 \cdot \sqrt[3]{1,002}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x \cdot \cos y - \sin(y - x) = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $\operatorname{tg}(x+z) = e^z y$.

Задача 7. Вычислить производную сложной функции:

$$z = \arcsin(x - y)$$
, где $x = \ln(\sqrt{t} + 1)$, $y = 4t^3$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = (x+1)^2 y + 1$ в точке $M_0(0,1,2)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \frac{x+y}{x^2}$ в точке A(2,0). Каково значение скорости изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^3 + 8y^3 - 6xy + 1$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 2x^3 + 4x^2 + y^2 - 2xy$ в ограниченной замкнутой области, ограниченной линиями: $y = x^2$, y = 4.

Вариант 10

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции

$$z = \frac{1}{x} + \sqrt{(x^2 + y^2 - 1)(4 - x^2 - y^2)}$$
.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln\left(\sqrt{x} + y^2\right).$$

Задача 3. Найти полный дифференциал функции $z = 2^y + x \operatorname{tg} y$.

Задача 4. Вычислить $\ln((0.09)^3 + (0.99)^3)$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$2x \cdot e^{xy} - y \cdot e^x + x^2 = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x^2 + y^2 + z^2 - 3xyz = xy^2z^3$$
.

Задача 7. Вычислить производную сложной функции:

$$z = \operatorname{arctg} \frac{x+y}{1+xy}$$
, где $x = t^2 + 1$, $y = \sin t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z^2 + x^2 + 2xyz - 2 = 0$ в точке $M_0(1, 0, 1)$.

Задача 9. Найти производную функции $z = \frac{1}{2} \ln(1 + x^2 - y^2)$ в точке A(1,1) по направлению к точке B(1,0).

Задача 10. Исследовать функцию $z = 2x^3 + 2y^3 - 36xy + 4$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 - 2y^2 + 4xy - 6x - 1$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y = 0, x + y = 3.

Вариант 11

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{\ln x}{\sqrt{4 - x^2 - y^2}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции $z=e^{\frac{x^2+y^2}{x+y}}$.

Задача 3. Найти полный дифференциал функции $z = \ln \left(\operatorname{ctg} \frac{x}{y} \right)$.

Задача 4. Вычислить $\ln\left(\sqrt[3]{1,003} + \sqrt[4]{0,98} - 1\right)$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $y^2 \cdot 3^{2x} + x^2 \cdot 3^{2y} = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x^{2} + 2y^{2} + 3z^{2} + xy - z + \sin(xy) - 9 = 0.$$

Задача 7. Вычислить производную сложной функции:

$$z = \ln(\sqrt{x} \cdot \ln y)$$
, где $x = \sin t$, $y = \arccos(t^5)$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^2y^3 + x^2 - 2y$ в точке $M_0(1,1,0)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \cos x \cdot \cos y$ в точке A(1,0). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^3 + y^2 - 3x + 4\sqrt{y^5}$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 5x^2 - xy + y^2 - 4x$ в ограниченной замкнутой области, ограниченной линиями: x = -1, y = -1, x + y - 1 = 0.

Вариант 12

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \ln x + \ln \sin y$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arctan \sqrt{x^2 + y^3 - 1}.$$

Задача 3. Найти полный дифференциал функции $z = \arcsin \frac{y}{x+y}$.

Задача 4. Вычислить $(2,009)^3 \cdot (2,007)^2$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$x^2y + \frac{1}{y} + \arcsin\frac{x}{y} = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $\ln(xy+z) = z^2 - y$.

Задача 7. Вычислить производные сложной функции:

$$z = \ln\left(e^{2x} + e^{6y}\right)$$
, где $y = x\sqrt{x}$; $\frac{\partial z}{\partial x}$, $\frac{dz}{dx} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2 + y^2 + z^2 = 169$ в точке $M_0(3, 4, 12)$.

Задача 9. Найти производную функции $z = \sqrt{xy + x}$ в точке A(1,1) по направлению к точке B(2,2).

Задача 10. Исследовать функцию z = xy(x + y - 1) на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = \frac{1}{3} \ln \frac{y}{x+2}$ в заданной области: $y \ge \frac{1}{2}$, $y \le 1$, $y \ge x^2$.

Вариант 13

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \frac{1}{|x|} \sqrt{y^2 - x}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = -\ln \cos \frac{y}{x}$$
.

Задача 3. Найти полный дифференциал функции

$$z = \ln(x + \operatorname{ctg}(xy)).$$

Задача 4. Вычислить $\sqrt{\left(1,04\right)^2 + \ln 1,02}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x^y = y^x$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$z^3 + 5xy^3 + 4yz^2 - x^3 - 6 = 0$$
.

Задача 7. Вычислить производные сложной функции:

$$z = \operatorname{arctg} \frac{u}{v}$$
, где $u = x \sin y$, $v = y \cos x$; $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^2 + y^2 + 2xy$ в точке $M_0(1, 1, 4)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \frac{x}{y^2}$ в точке A(1,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = 8x^3 + y^3 - 6xy - 5$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 - xy + 2y^2 + 3x + 2y + 1$ в треугольнике, ограниченном осями координат и прямой x + y + 5 = 0.

Вариант 14

Задача 1. Найти и изобразить на плоскости Oxy область определения функции

$$z = \sqrt{x^2 + y^2 - 2x} - \sqrt{4 - x^2 - y^2}.$$

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arccos\left(\ln\frac{x}{y}\right).$$

Задача 3. Найти полный дифференциал функции $z = \frac{\text{arctg } y}{1 + x^2}$.

Задача 4. Вычислить $\sqrt{(2,03)^2 + 5e^{0,02}}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x-y+{\rm arctg}\ y=0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$e^{\frac{z}{x}} \cdot \cos \frac{x}{y} = \frac{x}{y}.$$

Задача 7. Вычислить производные сложной функции:

$$z = x^{\ln y}$$
, где $x = \sin(uv)$, $y = \cos(v^2 - u)$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $2x^2y - xyz - 1 = 0$ в точке $M_0(1, 1, 1)$.

Задача 9. Найти производную функции $z = \sqrt{xy + 3x}$ в точке A(1,1) по направлению к точке B(0,1).

Задача 10. Исследовать функцию $z = x^2y(2-x-y)$ (x > 0, y > 0) на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^3 + 3xy + y^3 - 1$ в заданной области: $0 \le x \le 2$, $-1 \le y \le 2$.

Вариант 15

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = (x + \sqrt{y}) \cdot \ln(x^2 - y^2)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = (\sin x)^{\cos y}$$
.

Задача 3. Найти полный дифференциал функции $z = \ln \operatorname{tg}(xy)$.

Задача 4. Вычислить $(1,02)^3 \cdot (0,97)^2$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x \cdot \ln(x - y) = \frac{y}{x}$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$e^{xz}\cos(yz) = \frac{x}{\sqrt{2}}$$
.

Задача 7. Вычислить производные сложной функции:

$$z = \ln(x^2 + y^2) - x\sqrt{x}$$
, где $x = \sin t$, $y = \frac{t}{t+1}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = y + \ln \frac{x}{y}$ в точке $M_0(1, 1, 1)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \sqrt{\frac{x}{y}}$ в точке A(1,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^3 + xy^2 + 6xy$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + 2xy - y^2 - 4x$ в треугольнике, ограниченном прямыми: y = x + 1, y = 0, x = 3.

Вариант 16

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{\sqrt{x - \sqrt{y}}}{\sqrt{3 - x^2 - y^2}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \frac{\arcsin(x+y)}{\cos(xy)}.$$

Задача 3. Найти полный дифференциал функции

$$z = \ln\left(y + \sqrt{x^2 + y^2}\right).$$

Задача 4. Вычислить $\sqrt{\left(4,05\right)^2+\left(2,93\right)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$(x^2 + 3xy)^2 = \arctan(xy).$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $\frac{z}{x} = \ln \frac{z}{y} + 1$.

Задача 7. Вычислить производную сложной функции:

$$z = \ln(x^2 y)$$
, где $x = u^v$, $y = v^u$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2y^3z - xy^2z + z - 2 = 0$ в точке $M_0(1, 1, 2)$.

Задача 9. Найти производную функции $z = x \cos y + 4y$ в точке A(0,0) по направлению к точке B(3,4).

Задача 10. Исследовать функцию $z = x^2 - xy + y^2 - 2x + y$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = y^2 - x^2 + 10$ в круге $x^2 + y^2 \le 5$.

Вариант 17

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{1}{x-y} - \frac{1}{\sqrt{x^2+y^2-9}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \cos\frac{x+y}{x-y}.$$

Задача 3. Найти полный дифференциал функции

$$z = \ln\left(\sin y + x^{1/y}\right).$$

Задача 4. Вычислить $\frac{(1,04)^2}{\sqrt[3]{0,98}}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\sqrt{x^2 + y^2} = \arctan \frac{y}{x}$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$y^2 + x^2z - 4yz^3 - 1 = 0.$$

Задача 7. Вычислить производную сложной функции:

$$z = \sqrt{xy + \sin x}$$
, где $x = \operatorname{tg}\left(3t^2 + t\right)$, $y = \operatorname{ctg}\left(2t + 1\right)$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = \sqrt{x^2 + y^2}$ в точке $M_0(3, 4, 5)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = \ln(x + x^2 y)$ в точке A(1,0). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = xy + \frac{50}{x} + \frac{20}{y}$ (x > 0, y > 0) на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 6x - x^2 + 12y - 2y^2$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y = 0, 5x + 2y = 10.

Вариант 18

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{1}{x} \arcsin \frac{x+y}{y}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arctan \sqrt{x^y}$$
.

Задача 3. Найти полный дифференциал функции

$$z = 5^x \cdot \ln(\text{tg } y).$$

Задача 4. Вычислить $(2,003)^2 \cdot (3,004)^3$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x^{2/3} + y^{2/3} = a^{2/3}$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$ze^z - x \cdot \ln y = \sqrt{\frac{x}{y}}$$
.

Задача 7. Вычислить производную сложной функции:

$$z = x^3 \sin y + y^3 \cos x$$
, где $x = 3t^2 - \sqrt{t}$, $y = \frac{t^2}{t-1}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{1} = 1$ в точке $M_0\left(1,0,\frac{\sqrt{3}}{2}\right)$.

Задача 9. Найти производную функции $z = \arctan(xy)$ в точке A(1,1) по направлению к точке B(3,3).

Задача 10. Исследовать функцию $z = 2x^3 + xy^2 + 5x^2 + y^2$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 4(x+1)^2 + (y-3)^2$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y = 0, 6x + y = 12.

Вариант 19

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \sqrt{1-x^2} + \sqrt{y^2-1}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \sqrt{\frac{x}{y} + \frac{y}{x^2}} \,.$$

Задача 3. Найти полный дифференциал функции $z = x \cdot \ln \frac{y}{x}$.

Задача 4. Вычислить $\sqrt{(3,97)^2 + (2,99)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$\ln\left(x+\sqrt{x^2+y^2}\right) = \frac{x^2}{y}.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$xe^y + ye^x + ze^x = 2.$$

Задача 7. Вычислить производные сложной функции:

$$z = e^{3x-4y}$$
, где $x = \cos 2u$, $y = u^3 + v^3$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности

$$z = \sqrt{x^2 + y^2} - xy$$

в точке $M_0(3, 4, -7)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = x^2 + 4y^2 - 5$ в точке A(2,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = y\sqrt{x} - y^2 - x + 6y + 5$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^3 + y^3 - 9xy + 27$ в прямоугольнике, ограниченном прямыми: x = 0, x = 3, y = 0, y = 3.

Вариант 20

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \sqrt{1 - (x^2 + y)^2} \cdot \ln x$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \sqrt[3]{\ln(x^2 y)}.$$

Задача 3. Найти полный дифференциал функции

$$z = x \operatorname{tg} y + \sin y \cdot \operatorname{ctg} x$$
.

Задача 4. Вычислить $(1,04)^{6,01}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\sqrt{x} + \ln y = \arctan(xy)$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$e^{\frac{x}{y}} \cdot \sin \frac{z}{y} = \frac{y}{xz}.$$

Задача 7. Вычислить производные сложной функции:

$$z = \arcsin \frac{x}{y}$$
, где $y = \sqrt{x^3 + 1}$; $\frac{\partial z}{\partial x}$, $\frac{dz}{dx} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $xyz = a^3$ в точке $M_0\bigg(2a,a,\frac{a}{2}\bigg)$.

Задача 9. Найти производную функции $z = \sqrt{x^2 + y^2}$ в точке A(-3,4) по направлению к точке B(-2,3).

Задача 10. Исследовать функцию $z=x^2-xy+y^2+9x-6y-10$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2y(4-x-y)$ в треугольнике, ограниченном прямыми: x = 0, y = 0, x + y = 6.

Вариант 21

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \arcsin \frac{y}{x^2} + \arccos(1-x)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \operatorname{arctg} \frac{\sqrt{y}}{x^2}$$
.

Задача 3. Найти полный дифференциал функции

$$z = e^{\operatorname{ctg} x} \cdot \sin 5y$$
.

Задача 4. Вычислить $(1,96)^2 \cdot e^{0,08}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\cos y = xy$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x^3 + 2y^3 + z^3 - 3xyz - 3y + 3 = 0$$
.

Задача 7. Вычислить производную сложной функции:

$$z = tg(x + 2x^2 - y)$$
, где $x = \frac{1}{t}$, $y = \sqrt{t}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности

$$z = xy + \ln(2x + y - 2)$$

в точке $M_0(1,1,1)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = x^2 - 2y^2 - 4$ в точке A(3,2). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = 4(x - y) - x^2 - y^2$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = (3x^2 + 2y^2) \cdot e^{-x^2 - y^2}$ в круге $x^2 + y^2 \le 4$.

Вариант 22

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \frac{1}{\sqrt{(y^2-1)(x+1)}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln \sin(2x - 3y).$$

Задача 3. Найти полный дифференциал функции

$$z = \sin x + y \cdot e^{x/y}$$
.

Задача 4. Вычислить $\ln\left(\sqrt{1,07} + \sqrt[3]{0,96} - 1\right)$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x^2y^2 - x^4y^4 = a^4$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$z = x + \arctan \frac{z - x}{y}$$
.

Задача 7. Вычислить производные сложной функции:

$$z = \operatorname{arctg} \frac{3x}{y}$$
, где $x = u \sin v$, $y = u \cos v$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2 + 4y^2 + z^2 = 36$ в точке $M_0(4, 1, -4)$.

Задача 9. Найти производную функции $z = 5x^2 - 3x - y - 4$ в точке A(2,1) по направлению к точке B(5,5).

Задача 10. Исследовать функцию $z = 6y - 3y^2 - 2x^2 - 8x - 7$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + 2xy + 3y - 4x - 1$ в прямоугольнике: $0 \le x \le 1$, $0 \le y \le 2$.

Вариант 23

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции

$$z = \sqrt{\ln \frac{R^2}{x^2 + y^2}} + \sqrt{x^2 + y^2 - R^2}.$$

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \cos^2\left(4x^3 - 3\sqrt{y}\right).$$

Задача 3. Найти полный дифференциал функции $z = \arcsin \frac{x}{x+y}$.

Задача 4. Вычислить $(0.96)^{2.03}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$x \sin y - \cos y + \cos 2y = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$\ln z = yz + x^2 - 1.$$

Задача 7. Вычислить производную сложной функции:

$$z = \frac{1}{2} \ln \frac{x}{y}$$
, где $x = tg^2 t$, $y = ctg^3 \frac{t}{2}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x \sin(x - y)$ в точке $M_0(1, 1, 0)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = x^2 + 2y^2 + 2x + 3$ в точке A(1,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = (x^2 - 2y^2) \cdot e^{x-y}$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 2x^2 + 2y^2 + (x-1)^2 + (y-1)^2$ в треугольнике, ограниченном прямыми: x = 0, y = 0, x + y - 1 = 0.

Вариант 24

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \sqrt{\sin \pi (x^2 + y^2)}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arccos(y \cdot \sqrt{x}).$$

Задача 3. Найти полный дифференциал функции

$$z = 4e^{2x^2} \cdot (y^3 - \cos x).$$

Задача 4. Вычислить $\sqrt{(3,01)^2 + (3,96)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $xy - \ln y = a$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$tg^2 z + \sin x + \cos y - e^x = 0.$$

Задача 7. Вычислить производную сложной функции:

$$z = xy^2 + \frac{x}{y}$$
, где $x = \ln(t^2 + t)$, $y = 10^t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2 + y^2 = z^2$ в точке $M_0(-3, 4, -5)$.

Задача 9. Найти производную функции $z = 3xy^2 - 3x^2y + x^3 - 2$ в точке A(3,1) по направлению к точке B(6,5).

Задача 10. Исследовать функцию $z = x^3 + y^2 - 6xy - 39x + 6y + 4$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 + 4xy - 10x - 8y - 3$ в области: $0 \le x \le 2$, $-3 \le y \le 3$.

Вариант 25

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \sqrt{1 + x - y^2} + \sqrt{1 - x - y^2}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \left(\frac{1}{3}\right)^{\frac{y-2}{4-x}}.$$

Задача 3. Найти полный дифференциал функции

$$z = \ln(\cos x + \operatorname{tg} y).$$

Задача 4. Вычислить $\arctan \frac{1,02}{0,95}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$y\sin x - tg(y-x) = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$e^{\frac{z}{x}} - \arcsin \frac{z}{y} = 0.$$

Задача 7. Вычислить производную сложной функции:

$$z = \frac{\sin^2 x}{\sin^2 y}$$
, где $x = \ln t$, $y = t \cdot e^t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^2 + 2y^2$ в точке $M_0(-2, 1, 6)$.

Задача 9. Найти направление наиболее быстрого возрастания функции

$$z = 2x^2 - 2x + y^2 - 1$$

в точке A(3,2). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = xy - x^2 - y^2 + 6y$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции z = xy(5-x-y) в треугольнике: $x \ge 0$, $y \ge 0$, $x+y \le 5$.

Вариант 26

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \sqrt{4 - (x^2 + y)^2} \cdot \ln y$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = 2^{\frac{y}{x^2 - y^2}}.$$

Задача 3. Найти полный дифференциал функции

$$z = \sin^2 x + \cos^2 y.$$

Задача 4. Вычислить $(0,98)^{4,03}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$\ln \sqrt{x^2 + y^2} = a \arctan \frac{y}{x}.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$z^3 + 3x^2z - 2xy = 0.$$

Задача 7. Вычислить производную сложной функции:

$$z = \frac{x^2 + 2y^3}{x + 2y}$$
, где $x = \frac{u + v^2}{u}$, $y = \frac{v^2}{u + v}$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z^3-3x^2yz=1$ в точке $M_0\bigg(1,\frac{7}{6},2\bigg)$.

Задача 9. Найти производную функции $z = x^2y^2 - xy^3 - 3y + 5$ в точке A(2,1) по направлению к точке B(0,0).

Задача 10. Исследовать функцию $z = (x + y^2) \cdot e^{x/2}$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 - xy + y^2 + x + y - 1$ в заданной ограниченной замкнутой области: $x \le 0$, $y \le 0$, $x + y \ge -3$.

Вариант 27

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{\sqrt{4x - y^2}}{\ln(1 - x^2 - y^2)}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arccos\sqrt{y^2 - x^2} \,.$$

Задача 3. Найти полный дифференциал функции $z = e^{x^2 + y^2}$.

Задача 4. Вычислить $\frac{(1,03)^2}{\sqrt[4]{0,96}}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $\ln(x^2 - \lg y) = e^{y+1}$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x\cos y + y\cos z + z\cos x = 1.$$

Задача 7. Вычислить производную сложной функции:

$$z = \ln \frac{x - \sqrt{x^2 - y^2}}{x + \sqrt{x^2 - y^2}}$$
, где $y = x \cos \alpha$; $\frac{\partial z}{\partial x}$, $\frac{dz}{dx} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^3 + y^3$ в точке $M_0(1, -1, 0)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = 3x^2 + 6y^2 - 5$ в точке $A(1, \sqrt{2})$. Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = 2x^3 - xy^2 + 5x^2 + y^2 - 4$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = \frac{x}{x^2 + y^2 + 1}$ в заданной области: $x \ge 0$, $x^2 + y^2 \le 1$.

Вариант 28

Задача 1. Найти и изобразить на плоскости Oxy область определения функции $z = \ln(y^2 - 4x + 8)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = x^3 y \cdot \ln(\sqrt[4]{x} + y^2).$$

Задача 3. Найти полный дифференциал функции $z = \operatorname{arctg}(xy)$.

Задача 4. Вычислить $\sqrt[3]{\left(1,02\right)^2 + \left(0,03\right)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $(y+1)^{e^y}=e^{x-1}$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$\cos^2 x + y \cos(zx) = 1.$$

Задача 7. Вычислить производную сложной функции:

$$z = \frac{x + 2y}{xy}$$
, где $x = tg(t^2 + 1)$, $y = ctg(t^4 - 1)$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x + 2y - \ln z + 4 = 0$ в точке $M_0(2, -3, 1)$.

Задача 9. Найти производную функции $z = x^3 + xy^2 - 2x^2y - 4$ в точке A(2,2) по направлению к точке B(4,5).

Задача 10. Исследовать функцию $z=1+\sin x+\sin y+\sin \left(x+y\right)$ $\left(0 \le x \le \frac{\pi}{2}, \ 0 \le y \le \frac{\pi}{2}\right)$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^3 - 3xy + y^3 + 2$ в заданной области: $-2 \le x \le 2$, $-2 \le y \le 2$.

Вариант 29

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \sqrt{x^2 - y^2} - \frac{1}{x}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = 2^{x^3} \cdot \arccos 4y$$
.

Задача 3. Найти полный дифференциал функции $z = \frac{x^2 - y^2}{x^2 + y^2}$.

Задача 4. Вычислить $\sqrt{1,004} \cdot \sqrt[3]{0,097}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$\arctan \frac{x+y}{a} - \frac{y}{2a} = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $\frac{z}{x} - \ln \frac{z}{y+2} = 0$.

Задача 7. Вычислить производную сложной функции:

$$z = \arccos(xy^2)$$
, где $x = t^2 \ln t$, $y = t \cdot e^t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = x^2 - 2xy + y^2 - x + 2y$ в точке $M_0(1, 1, 1)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = 9x^2 + y^2 - 2$ в точке A(1,4). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^3 + 3xy^2 - 15x - 12y - 4$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z=y^2-x^2-4x$ в ограниченной замкнутой области, ограниченной линиями: $x=0, \quad x=-\sqrt{4-y^2}$.

Вариант 30

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \arcsin \frac{y-2}{x}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arctan \frac{x+y}{1-xy}.$$

Задача 3. Найти полный дифференциал функции

$$z = \sqrt{4x^2 + 3\sin y} .$$

Задача 4. Вычислить $(1,003)^{2,07}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$xe^y + ye^x - e^{xy} = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$\frac{\sin x}{\sin z} = \frac{z}{y}.$$

Задача 7. Вычислить производную сложной функции:

$$z = x^2 \ln y$$
, где $x = \frac{u}{v}$, $y = 3u - 2v$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2z + zy^2 = 4$ в точке $M_0(-2, 0, 1)$.

Задача 9. Найти производную функции

$$z = x^2 - xy - 2y^2 + 3$$

в точке A(1,1) по направлению к точке $B(1+\sqrt{3},2)$.

Задача 10. Исследовать функцию $z = 3x^2 - 2x\sqrt{y} + y - 8x + 5$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = 2x^2 - 2xy - x + 2y + 2$ в заданной ограниченной замкнутой области: $0 \le x \le 3$, $0 \le y \le 3 - x$.

Вариант 31

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \log_y(x^2 + y^2 - 9)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = e^{x - y} (x \cos y + y \sin x).$$

Задача 3. Найти полный дифференциал функции

$$z = \ln(x + \sqrt{x^2 + 8y^3}).$$

Задача 4. Вычислить $\sqrt{(0.997)^2 \cdot (1.008)^3 + 3}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$x^2 + y^2 + \ln(x^2 + y^2) - a^2 = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x^3 + y^3 + z^3 - 3xyz = 0$$
.

Задача 7. Вычислить производную сложной функции:

$$z = \sqrt{\frac{x+y}{x-y}}$$
, где $x = tg(e^t + 1)$, $y = ctg \frac{t}{2}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = \arctan \frac{y}{x}$ в точке $M_0 \left(1, 1, \frac{\pi}{4} \right)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = x^2 + y^2 - 5$ в точке A(-4,3). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^3y^2(6-x-y)$ (x > 0, y > 0) на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + xy + y^2$ в ограниченной замкнутой области, ограниченной линиями: x = -1, x = 1, y = -1, y = 2.

Вариант 32

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \arcsin(x+y) + \sqrt{9-x^2-y^2}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = xy\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \,.$$

Задача 3. Найти полный дифференциал функции $z = x \cdot y^x$.

Задача 4. Вычислить $(2,007)^2 \cdot (1,012)^3$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $y + \cos(x + y) = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $x = z \cdot \ln \frac{z}{y}$.

Задача 7. Вычислить производную сложной функции:

$$z = \arcsin \frac{y}{x}$$
, где $y = \sqrt[3]{1-x}$; $\frac{\partial z}{\partial x}$, $\frac{dz}{dx} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $xy = z^2$ в точке $M_0(1, 4, 2)$.

Задача 9. Найти производную функции $z = \ln(x + y)$ в точке A(1, 2) по направлению к точке B(3, 4).

Задача 10. Исследовать функцию $z = \left(\frac{4x}{3} + y\right) \cdot \left(47 - x - y\right) + 2xy$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = (x-1)^2 + (y-2)^2$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y = 0, 2x + y = 6.

Вариант 33

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \frac{\sqrt{x}}{\sin y}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \frac{x}{\sqrt{x^2 - y^3}}.$$

Задача 3. Найти полный дифференциал функции $z = tg \frac{y^2}{x}$.

Задача 4. Вычислить $\sqrt{\left(2,995\right)^2 + \left(4,005\right)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $x + y - e^{x + y} = 0$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением $\arctan(yz) = xz$.

Задача 7. Вычислить производную сложной функции:

$$u = \frac{xy}{z}$$
, где $x = t^2 - 1$, $y = \ln t$, $z = e^t$; $\frac{du}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = yx - 2xy^2 + x^2y$ в точке $M_0(-1, 2, 8)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = x^2 - 5y + 3$ в точке A(5,4). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^4 + y^4 - x^2 - 2xy - y^2$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 + 2y^2 - 2x + 1$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y + x - 2 = 0, y - x + 2 = 0.

Вариант 34

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \sqrt{\sin x \cdot \cos y}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = x \cdot \operatorname{ctg}\left(\sqrt[3]{x} + y^{-1}\right).$$

Задача 3. Найти полный дифференциал функции

$$z = \frac{x^2 + y^2}{x^2 - y^2}.$$

Задача 4. Вычислить $(1,03)^2 \cdot \sqrt{0,98}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$x^2y - \sin(xy) + e^{xy} = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$z \cdot \ln(x+z) = \frac{xy}{z}$$
.

Задача 7. Вычислить производную сложной функции:

$$z = \sqrt{2x^2 + 3y^2}$$
, где $x = \sin t$, $y = \cos 2t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^2 + y^2 - (z - 5)^2 = 0$ в точке $M_0(4, 3, 0)$.

Задача 9. Найти производную функции

$$z = 3x^4 + 2xy^3 - 4$$

в точке A(1,2) по направлению к точке B(4,-2).

Задача 10. Исследовать функцию $z = x\sqrt{y} - x^2 - y + 6x + 3$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = \ln(x^2 + y^2)$ в ограниченной замкнутой области, ограниченной линиями: $x = \frac{1}{4}$, x = 1, y = 0, $y = \sqrt{x}$.

Вариант 35

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \arccos \frac{x}{y^2} + \arcsin(1 - y^2)$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \ln\left(\frac{1}{\sqrt[3]{x}} - \frac{1}{\sqrt{y}}\right).$$

Задача 3. Найти полный дифференциал функции $z = \frac{x+y}{x-y}$.

Задача 4. Вычислить $\ln \left(\sqrt{0,99} + \sqrt[3]{1,04} - 1 \right)$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением $y = 1 + y^x$.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$\ln \sqrt{x^2 + z^2} = y \cdot \arctan \frac{z}{x}.$$

Задача 7. Вычислить производную сложной функции:

$$z = e^{x^2 + y^2}$$
, где $x = a \cos t$, $y = a \sin t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = \sin x \cdot \cos y$ в точке $M_0\left(\frac{\pi}{4}, \frac{\pi}{4}, \frac{1}{2}\right)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = x^2 + y^2 - 2x - 4$ в точке A(3,1). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = x^2 + y^2 - 2 \ln x - 18 \ln y$ (x > 0, y > 0) на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = y^2 - 6xy$ в ограниченной замкнутой области, ограниченной линиями: x = 0, y = -1, $y = x^3$.

Вариант 36

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \arcsin \frac{x}{\sqrt{x^2 + y^2}}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arctan \frac{x+y}{x-y}.$$

Задача 3. Найти полный дифференциал функции

$$z = 2 - \sqrt[3]{x^2 + y^2}$$
.

Задача 4. Вычислить $\sqrt{\left(2,96\right)^2 + \left(4,07\right)^2}$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$(x^2 + y^2)^2 - a^2(x^2 - y^2) = 0.$$

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$x^3 + y^3 + xz = e^{\frac{z}{y}}.$$

Задача 7. Вычислить производную сложной функции:

$$z = \ln(x - y^4)$$
, где $x = \cos t$, $y = \sqrt{\sin t}$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $x^3 + y^3 + z^3 + xyz = 6$ в точке $M_0(1, 2, -1)$.

Задача 9. Найти производную функции

$$z = 3x^4 - xy + y^2$$

в точке A(1,2) по направлению к точке $B(2,2+\sqrt{3})$.

Задача 10. Исследовать функцию $z = x^3 + y^3 - 9xy$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 - 2x + y^2 - 2y + 3$ в заданной ограниченной замкнутой области: $x \ge 0$, $y \ge 0$, $3x + 4y \le 12$.

Вариант 37

Задача 1. Найти и изобразить на плоскости *Оху* область определения функции $z = \sqrt{\ln x \cdot \ln y}$.

Задача 2. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от функции

$$z = \arcsin \frac{x}{\sqrt{x^2 + y^2}}.$$

Задача 3. Найти полный дифференциал функции

$$z = \frac{1}{2} \ln(x^2 + y^2).$$

Задача 4. Вычислить $e^{0,01} \cdot (2,02)^2$ приближенно с помощью полного дифференциала.

Задача 5. Найти производную $\frac{dy}{dx}$ от неявной функции, заданной уравнением

$$x^2 + 2xy + y^2 - 4x + 2y - 2 = 0$$
.

Задача 6. Найти частные производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ от неявной функции, заданной уравнением

$$z = x + \operatorname{arctg} \frac{y}{z - x}$$
.

Задача 7. Вычислить производную сложной функции:

$$z = \sqrt{\frac{1+x}{1+y}}$$
, где $x = -\cos t$, $y = \cos t$; $\frac{dz}{dt} = ?$

Задача 8. Составить уравнения нормали и касательной плоскости к поверхности $z = y \cdot e^{-2x} + x(1-2y)$ в точке $M_0(0, 2, 2)$.

Задача 9. Найти направление наиболее быстрого возрастания функции $z = 2y^2 - 3x^2 + 4$ в точке A(2,3). Какова скорость изменения функции в этом направлении?

Задача 10. Исследовать функцию $z = 2x^3 - xy^2 + 3x^2 + 2y^2 + 1$ на экстремум.

Задача 11. Найти наибольшее и наименьшее значения функции $z = x^2 \cdot \ln y$ в ограниченной замкнутой области, ограниченной линиями: y = 1, y = 2, $y = x^2$.

Литература

- 1. *Берман*, Γ . H. Сборник задач по курсу математического анализа / Γ . H. Берман. M. : Наука, 2009.
- 2. *Бугров, Я. С.* Высшая математика : в 3 т. Т. 2 : Дифференциальное и интегральное исчисление / Я. С. Бугров, С. М. Никольский. М. : Дрофа, 2007.
- 3. *Выск*, *Н. Д.* Математический анализ : в 3 ч. Ч. 1 : Дифференциальное исчисление / Н. Д. Выск. М. : МАТИ, 2011.
- 4. Высшая математика в упражнениях и задачах : в 2 ч. Ч. 1 / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова, С. П. Данко. М. : Оникс, 2009.
- 5. *Гелбаум, Б.* Контрпримеры в анализе / Б. Гелбаум, Дж. Олмстед. М.: ЛКИ, 2010.
- 6. Дифференциальное исчисление функций нескольких переменных : методические указания и варианты индивидуальных заданий / сост. Ю. В. Селиванов, Е. В. Яновская. М. : МАТИ, 2001.
- 7. *Пискунов*, *H. С.* Дифференциальное и интегральное исчисления : в 2 т. Т. 1 / Н. С. Пискунов. М. : Интеграл-Пресс, 2010.
- 8. Сборник задач по математике для втузов : в 4 ч. Ч. 2 / под ред. А. В. Ефимова, А. С. Поспелова. М. : Физматлит, 2009.
- 9. *Фихтенгольц*, *Г. М.* Курс дифференциального и интегрального исчисления : в 3 т. Т. 1 / Г. М. Фихтенгольц. СПб. : Лань, 2009.

Оглавление

Введение	3
1. ОСНОВНЫЕ ПОНЯТИЯ	4
1.1. Понятие функции нескольких переменных	4
1.2. Частные производные	6
Частные производные первого порядка	6
Частные производные высших порядков	8
1.3. Полный дифференциал и его применение	11
1.4. Дифференцирование сложных функций	
Случай одной независимой переменной	
Случай нескольких независимых переменных	16
1.5. Неявные функции и их дифференцирование	17
1.6. Касательная плоскость и нормаль к поверхности	19
1.7. Производная по заданному направлению. Градие	нт22
1.8. Экстремум функции двух переменных	25
1.9. Наибольшее и наименьшее значения функции	27
2. ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ	32
Литература	86

Учебное издание

Селиванов Юрий Васильевич **Дементьева** Вера Владимировна

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Под редакцией авторов

Технический редактор Ю. В. Чуфистова

Компьютерная верстка выполнена Ю. В. Селивановым

Подписано в печать 14.10.11 г. Формат 60 х 84 ½ Печать на ризографе. Уч.-изд. л. 2,83. Усл. п. л. 5,12 Тираж 120 экз. Заказ № 125

Издательско-типографский центр МАТИ 109240, Москва, Берниковская наб., 14